A Generalization of the Notion of Reproductivity
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 76 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In Section 1 we state the known theory of reproductive equations in general. The key result is that every equation, having at least one solution, is equivalent to some reproductive equation. In Section 2 we extend the notion of reproductive equations to the class of equations $Eq(x)$ which are solved by means of some given equation, denoted by $Eq_1(\varrho)$. In that case we also prove that such an $Eq(x)$, having at least one solution, is equivalent to some reproductive equation.
Classification : 39B52
@article{PIM_2000_N_S_67_81_a6,
     author = {Slavi\v{s}a B. Pre\v{s}i\'c},
     title = {A {Generalization} of the {Notion} of {Reproductivity}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {76 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {1011.39021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a6/}
}
TY  - JOUR
AU  - Slaviša B. Prešić
TI  - A Generalization of the Notion of Reproductivity
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 76 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a6/
LA  - en
ID  - PIM_2000_N_S_67_81_a6
ER  - 
%0 Journal Article
%A Slaviša B. Prešić
%T A Generalization of the Notion of Reproductivity
%J Publications de l'Institut Mathématique
%D 2000
%P 76 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a6/
%G en
%F PIM_2000_N_S_67_81_a6
Slaviša B. Prešić. A Generalization of the Notion of Reproductivity. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 76 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a6/