Finite Difference Schemes on Nonuniform Meshes for Parabolic Problems With Generalized Solutions
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 145
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the convergence of finite difference schemes
for one dimensional heat conduction equation on nonuniform rectangular
meshes. For schemes with averaged right hand sides convergence rate
estimates consistent with the smoothness of the solution in discrete
$L_2$ norm are obtained. Possible extensions of obtained results are
noted.
Classification :
65M10
Keywords: Parabolic problem, finite differences, nonuniform mesh, generalized solution, rate of convergence
Keywords: Parabolic problem, finite differences, nonuniform mesh, generalized solution, rate of convergence
@article{PIM_2000_N_S_67_81_a13,
author = {Bo\v{s}ko Jovanovi\'c and Peter P. Matus},
title = {Finite {Difference} {Schemes} on {Nonuniform} {Meshes} for {Parabolic} {Problems} {With} {Generalized} {Solutions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {145 },
publisher = {mathdoc},
volume = {_N_S_67},
number = {81},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a13/}
}
TY - JOUR AU - Boško Jovanović AU - Peter P. Matus TI - Finite Difference Schemes on Nonuniform Meshes for Parabolic Problems With Generalized Solutions JO - Publications de l'Institut Mathématique PY - 2000 SP - 145 VL - _N_S_67 IS - 81 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a13/ LA - en ID - PIM_2000_N_S_67_81_a13 ER -
%0 Journal Article %A Boško Jovanović %A Peter P. Matus %T Finite Difference Schemes on Nonuniform Meshes for Parabolic Problems With Generalized Solutions %J Publications de l'Institut Mathématique %D 2000 %P 145 %V _N_S_67 %N 81 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a13/ %G en %F PIM_2000_N_S_67_81_a13
Boško Jovanović; Peter P. Matus. Finite Difference Schemes on Nonuniform Meshes for Parabolic Problems With Generalized Solutions. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 145 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a13/