Continua Determined by Mappings
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 133
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A family $\Cal C$ of continua is said to be determined by a
class $\frak M$ of mappings if a continuum $Y$ is in $\Cal C$ if and
only if each mapping from a continuum onto $Y$ is in $\frak M$. The
paper contains a study of this notion for various families $\Cal C$ of
continua and various classes $\frak M$ of mappings between them.
@article{PIM_2000_N_S_67_81_a12,
author = {Janusz J. Charatonik and Wlodzimierz. J. Charatonik},
title = {Continua {Determined} by {Mappings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {133 },
publisher = {mathdoc},
volume = {_N_S_67},
number = {81},
year = {2000},
zbl = {0946.54025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/}
}
TY - JOUR AU - Janusz J. Charatonik AU - Wlodzimierz. J. Charatonik TI - Continua Determined by Mappings JO - Publications de l'Institut Mathématique PY - 2000 SP - 133 VL - _N_S_67 IS - 81 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/ LA - en ID - PIM_2000_N_S_67_81_a12 ER -
Janusz J. Charatonik; Wlodzimierz. J. Charatonik. Continua Determined by Mappings. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/