Continua Determined by Mappings
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 133 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A family $\Cal C$ of continua is said to be determined by a class $\frak M$ of mappings if a continuum $Y$ is in $\Cal C$ if and only if each mapping from a continuum onto $Y$ is in $\frak M$. The paper contains a study of this notion for various families $\Cal C$ of continua and various classes $\frak M$ of mappings between them.
Classification : 54E10 54F15
@article{PIM_2000_N_S_67_81_a12,
     author = {Janusz J. Charatonik and Wlodzimierz. J. Charatonik},
     title = {Continua {Determined} by {Mappings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {133 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0946.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/}
}
TY  - JOUR
AU  - Janusz J. Charatonik
AU  - Wlodzimierz. J. Charatonik
TI  - Continua Determined by Mappings
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 133 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/
LA  - en
ID  - PIM_2000_N_S_67_81_a12
ER  - 
%0 Journal Article
%A Janusz J. Charatonik
%A Wlodzimierz. J. Charatonik
%T Continua Determined by Mappings
%J Publications de l'Institut Mathématique
%D 2000
%P 133 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/
%G en
%F PIM_2000_N_S_67_81_a12
Janusz J. Charatonik; Wlodzimierz. J. Charatonik. Continua Determined by Mappings. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a12/