Rigidity Theorems of Hypersurfaces in a Sphere
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 112 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

By the study of Cheng-Yau's self-adjoint operator $\square$, we prove two rigidity theorems for a class of $n$-dimensional hypersurfaces in the $(n+1)$-dimensional unit sphere $S^{n+1}$.
Classification : 53C42 53A10
@article{PIM_2000_N_S_67_81_a10,
     author = {Li Haizhong},
     title = {Rigidity {Theorems} of {Hypersurfaces} in a {Sphere}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {112 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0951.53037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/}
}
TY  - JOUR
AU  - Li Haizhong
TI  - Rigidity Theorems of Hypersurfaces in a Sphere
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 112 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/
LA  - en
ID  - PIM_2000_N_S_67_81_a10
ER  - 
%0 Journal Article
%A Li Haizhong
%T Rigidity Theorems of Hypersurfaces in a Sphere
%J Publications de l'Institut Mathématique
%D 2000
%P 112 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/
%G en
%F PIM_2000_N_S_67_81_a10
Li Haizhong. Rigidity Theorems of Hypersurfaces in a Sphere. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 112 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/