Rigidity Theorems of Hypersurfaces in a Sphere
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 112

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

By the study of Cheng-Yau's self-adjoint operator $\square$, we prove two rigidity theorems for a class of $n$-dimensional hypersurfaces in the $(n+1)$-dimensional unit sphere $S^{n+1}$.
Classification : 53C42 53A10
@article{PIM_2000_N_S_67_81_a10,
     author = {Li Haizhong},
     title = {Rigidity {Theorems} of {Hypersurfaces} in a {Sphere}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {112 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0951.53037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/}
}
TY  - JOUR
AU  - Li Haizhong
TI  - Rigidity Theorems of Hypersurfaces in a Sphere
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 112 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/
LA  - en
ID  - PIM_2000_N_S_67_81_a10
ER  - 
%0 Journal Article
%A Li Haizhong
%T Rigidity Theorems of Hypersurfaces in a Sphere
%J Publications de l'Institut Mathématique
%D 2000
%P 112 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/
%G en
%F PIM_2000_N_S_67_81_a10
Li Haizhong. Rigidity Theorems of Hypersurfaces in a Sphere. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 112 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a10/