Relative Complements in the Weak Congruence Lattice
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Necessary and sufficient conditions under which a weak
congruence lattice of an algebra is relatively complemented are given.
Consequences concerning other kinds of complementedness are also
presented. Finally, we investigate which of the main algebraic
constructions preserve the relative complements in the weak congruence
lattice.
Classification :
08A30 06C15
@article{PIM_2000_N_S_67_81_a1,
author = {Branimir \v{S}e\v{s}elja and Andreja Tepav\v{c}evi\'c},
title = {Relative {Complements} in the {Weak} {Congruence} {Lattice}},
journal = {Publications de l'Institut Math\'ematique},
pages = {7 },
publisher = {mathdoc},
volume = {_N_S_67},
number = {81},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a1/}
}
TY - JOUR AU - Branimir Šešelja AU - Andreja Tepavčević TI - Relative Complements in the Weak Congruence Lattice JO - Publications de l'Institut Mathématique PY - 2000 SP - 7 VL - _N_S_67 IS - 81 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a1/ LA - en ID - PIM_2000_N_S_67_81_a1 ER -
Branimir Šešelja; Andreja Tepavčević. Relative Complements in the Weak Congruence Lattice. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 7 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a1/