The beta-polynomials of Complete Graphs are Real
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A polynomial is said to be real if all its zeros are real.
It has been conjectured that the $\beta$-polynomials of all graphs are
real. In this paper we show that the conjecture is true for complete
graphs. In fact, we obtain a more general result, namely that certain
linear combinations of Hermite polynomials are real.
@article{PIM_2000_N_S_67_81_a0,
author = {Xueliang Li and Ivan Gutman and Gradimir V. Milovanovi\'c},
title = {The beta-polynomials of {Complete} {Graphs} are {Real}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
year = {2000},
volume = {_N_S_67},
number = {81},
zbl = {0946.05068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/}
}
TY - JOUR AU - Xueliang Li AU - Ivan Gutman AU - Gradimir V. Milovanović TI - The beta-polynomials of Complete Graphs are Real JO - Publications de l'Institut Mathématique PY - 2000 SP - 1 VL - _N_S_67 IS - 81 UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/ LA - en ID - PIM_2000_N_S_67_81_a0 ER -
Xueliang Li; Ivan Gutman; Gradimir V. Milovanović. The beta-polynomials of Complete Graphs are Real. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/