The beta-polynomials of Complete Graphs are Real
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A polynomial is said to be real if all its zeros are real. It has been conjectured that the $\beta$-polynomials of all graphs are real. In this paper we show that the conjecture is true for complete graphs. In fact, we obtain a more general result, namely that certain linear combinations of Hermite polynomials are real.
Classification : 05C50 05C70
@article{PIM_2000_N_S_67_81_a0,
     author = {Xueliang Li and Ivan Gutman and Gradimir V. Milovanovi\'c},
     title = {The beta-polynomials of {Complete} {Graphs} are {Real}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0946.05068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/}
}
TY  - JOUR
AU  - Xueliang Li
AU  - Ivan Gutman
AU  - Gradimir V. Milovanović
TI  - The beta-polynomials of Complete Graphs are Real
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 1 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/
LA  - en
ID  - PIM_2000_N_S_67_81_a0
ER  - 
%0 Journal Article
%A Xueliang Li
%A Ivan Gutman
%A Gradimir V. Milovanović
%T The beta-polynomials of Complete Graphs are Real
%J Publications de l'Institut Mathématique
%D 2000
%P 1 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/
%G en
%F PIM_2000_N_S_67_81_a0
Xueliang Li; Ivan Gutman; Gradimir V. Milovanović. The beta-polynomials of Complete Graphs are Real. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a0/