Universal Counting of Lattice Points in Polytopes
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 16 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Given a lattice polytope $P$ (with underlying lattice $\lo$), the universal counting function $\uu_P(\lo')=|P\cap \lo'|$ is defined on all lattices $\lo'$ containing $\lo$. Motivated by questions concerning lattice polytopes and the Ehrhart polynomial, we study the equation $\uu_P=\uu_Q$.
Classification : 52B20 52A27
@article{PIM_1999_N_S_66_80_a2,
     author = {Imre B\'ar\'any and Jean-Michel Kantor},
     title = {Universal {Counting} of {Lattice} {Points} in {Polytopes}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {16 },
     publisher = {mathdoc},
     volume = {_N_S_66},
     number = {80},
     year = {1999},
     zbl = {0954.52014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/}
}
TY  - JOUR
AU  - Imre Bárány
AU  - Jean-Michel Kantor
TI  - Universal Counting of Lattice Points in Polytopes
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 16 
VL  - _N_S_66
IS  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/
LA  - en
ID  - PIM_1999_N_S_66_80_a2
ER  - 
%0 Journal Article
%A Imre Bárány
%A Jean-Michel Kantor
%T Universal Counting of Lattice Points in Polytopes
%J Publications de l'Institut Mathématique
%D 1999
%P 16 
%V _N_S_66
%N 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/
%G en
%F PIM_1999_N_S_66_80_a2
Imre Bárány; Jean-Michel Kantor. Universal Counting of Lattice Points in Polytopes. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 16 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/