Universal Counting of Lattice Points in Polytopes
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 16
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Given a lattice polytope $P$ (with underlying lattice $\lo$), the
universal counting function $\uu_P(\lo')=|P\cap \lo'|$ is defined on
all lattices $\lo'$ containing $\lo$. Motivated by questions concerning
lattice polytopes and the Ehrhart polynomial, we study the equation
$\uu_P=\uu_Q$.
@article{PIM_1999_N_S_66_80_a2,
author = {Imre B\'ar\'any and Jean-Michel Kantor},
title = {Universal {Counting} of {Lattice} {Points} in {Polytopes}},
journal = {Publications de l'Institut Math\'ematique},
pages = {16 },
publisher = {mathdoc},
volume = {_N_S_66},
number = {80},
year = {1999},
zbl = {0954.52014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/}
}
TY - JOUR AU - Imre Bárány AU - Jean-Michel Kantor TI - Universal Counting of Lattice Points in Polytopes JO - Publications de l'Institut Mathématique PY - 1999 SP - 16 VL - _N_S_66 IS - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/ LA - en ID - PIM_1999_N_S_66_80_a2 ER -
Imre Bárány; Jean-Michel Kantor. Universal Counting of Lattice Points in Polytopes. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 16 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a2/