On Commuting Generalized Inverses in Semigroups
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 103
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $S$ be a semigroup and let $a\in S$. In this note we
describe all possible commuting generalized inverses of $a$ (in the
sense of Definitions 1 and 2). It turns out that the Drazin inverse of
$a$ is the only generalized inverse of $a$ which commutes with $a$.
@article{PIM_1999_N_S_65_79_a9,
author = {Jovan D. Ke\v{c}ki\'c and Svetozar Mili\'c},
title = {On {Commuting} {Generalized} {Inverses} in {Semigroups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {103 },
publisher = {mathdoc},
volume = {_N_S_65},
number = {79},
year = {1999},
zbl = {1011.20052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a9/}
}
TY - JOUR AU - Jovan D. Kečkić AU - Svetozar Milić TI - On Commuting Generalized Inverses in Semigroups JO - Publications de l'Institut Mathématique PY - 1999 SP - 103 VL - _N_S_65 IS - 79 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a9/ LA - en ID - PIM_1999_N_S_65_79_a9 ER -
Jovan D. Kečkić; Svetozar Milić. On Commuting Generalized Inverses in Semigroups. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 103 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a9/