Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove an asymptotic expansion of Riemann-Siegel type for Dirichlet series associated to cusp forms. Its derivation starts from a new integral formula for the Dirichlet series and uses sharp asymptotic expansions for partial sums of the Fourier series of the cusp form.
Classification : 11M41
Keywords: Riemann-Siegel formula, cusp forms, Dirichlet series
@article{PIM_1999_N_S_65_79_a7,
     author = {Andreas Guthmann},
     title = {Asymptotic {Expansions} for {Dirichlet} {Series} {Associated} to {Cusp} {Forms}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_65},
     number = {79},
     year = {1999},
     zbl = {1006.11052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/}
}
TY  - JOUR
AU  - Andreas Guthmann
TI  - Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 69 
VL  - _N_S_65
IS  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/
LA  - en
ID  - PIM_1999_N_S_65_79_a7
ER  - 
%0 Journal Article
%A Andreas Guthmann
%T Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
%J Publications de l'Institut Mathématique
%D 1999
%P 69 
%V _N_S_65
%N 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/
%G en
%F PIM_1999_N_S_65_79_a7
Andreas Guthmann. Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/