Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove an asymptotic expansion of Riemann-Siegel type for
Dirichlet series associated to cusp forms. Its derivation starts from
a new integral formula for the Dirichlet series and uses sharp
asymptotic expansions for partial sums of the Fourier series of the
cusp form.
@article{PIM_1999_N_S_65_79_a7,
author = {Andreas Guthmann},
title = {Asymptotic {Expansions} for {Dirichlet} {Series} {Associated} to {Cusp} {Forms}},
journal = {Publications de l'Institut Math\'ematique},
pages = {69 },
publisher = {mathdoc},
volume = {_N_S_65},
number = {79},
year = {1999},
zbl = {1006.11052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/}
}
TY - JOUR AU - Andreas Guthmann TI - Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms JO - Publications de l'Institut Mathématique PY - 1999 SP - 69 VL - _N_S_65 IS - 79 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/ LA - en ID - PIM_1999_N_S_65_79_a7 ER -
Andreas Guthmann. Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/