Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove an asymptotic expansion of Riemann-Siegel type for Dirichlet series associated to cusp forms. Its derivation starts from a new integral formula for the Dirichlet series and uses sharp asymptotic expansions for partial sums of the Fourier series of the cusp form.
Classification : 11M41
Keywords: Riemann-Siegel formula, cusp forms, Dirichlet series
@article{PIM_1999_N_S_65_79_a7,
     author = {Andreas Guthmann},
     title = {Asymptotic {Expansions} for {Dirichlet} {Series} {Associated} to {Cusp} {Forms}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_65},
     number = {79},
     year = {1999},
     zbl = {1006.11052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/}
}
TY  - JOUR
AU  - Andreas Guthmann
TI  - Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 69 
VL  - _N_S_65
IS  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/
LA  - en
ID  - PIM_1999_N_S_65_79_a7
ER  - 
%0 Journal Article
%A Andreas Guthmann
%T Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms
%J Publications de l'Institut Mathématique
%D 1999
%P 69 
%V _N_S_65
%N 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/
%G en
%F PIM_1999_N_S_65_79_a7
Andreas Guthmann. Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a7/