Convolutions of Fourier Coefficients of Cusp Forms
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 31 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

Analogues of classical binary additive divisor problems for Fourier coefficients of (holomorphic or non-holomorphic) cusp forms are discussed in a new way by a variant of the circle method. The results are either new or coincide with earlier ones.
Classification : 11F30 11N37
Keywords: cusp forms, circle method, spectral theory.
@article{PIM_1999_N_S_65_79_a4,
     author = {M. Jutila},
     title = {Convolutions of {Fourier} {Coefficients} of {Cusp} {Forms}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     year = {1999},
     volume = {_N_S_65},
     number = {79},
     zbl = {1006.11019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a4/}
}
TY  - JOUR
AU  - M. Jutila
TI  - Convolutions of Fourier Coefficients of Cusp Forms
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 31 
VL  - _N_S_65
IS  - 79
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a4/
LA  - en
ID  - PIM_1999_N_S_65_79_a4
ER  - 
%0 Journal Article
%A M. Jutila
%T Convolutions of Fourier Coefficients of Cusp Forms
%J Publications de l'Institut Mathématique
%D 1999
%P 31 
%V _N_S_65
%N 79
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a4/
%G en
%F PIM_1999_N_S_65_79_a4
M. Jutila. Convolutions of Fourier Coefficients of Cusp Forms. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a4/