Weak Probability Logic With Infinitary Predicates
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 8 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We construct the logic $L(V,\nu,\frak{m},R)$, as a logic with infinitary predicates, generalized ordinary and probability quantifiers and propositional connectives. An important feature of this logic is that infinitely many variables can occur in a single formula, but only finitely many quantifiers and connectives. We prove the weak completeness theorem for this logic.
Classification : 03C70
@article{PIM_1999_N_S_65_79_a1,
     author = {Silvana Marinkovi\'c and Miodrag Ra\v{s}kovi\'c and Radosav {\DJ}or{\dj}evi\'c},
     title = {Weak {Probability} {Logic} {With} {Infinitary} {Predicates}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {8 },
     publisher = {mathdoc},
     volume = {_N_S_65},
     number = {79},
     year = {1999},
     zbl = {1006.03031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/}
}
TY  - JOUR
AU  - Silvana Marinković
AU  - Miodrag Rašković
AU  - Radosav Đorđević
TI  - Weak Probability Logic With Infinitary Predicates
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 8 
VL  - _N_S_65
IS  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/
LA  - en
ID  - PIM_1999_N_S_65_79_a1
ER  - 
%0 Journal Article
%A Silvana Marinković
%A Miodrag Rašković
%A Radosav Đorđević
%T Weak Probability Logic With Infinitary Predicates
%J Publications de l'Institut Mathématique
%D 1999
%P 8 
%V _N_S_65
%N 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/
%G en
%F PIM_1999_N_S_65_79_a1
Silvana Marinković; Miodrag Rašković; Radosav Đorđević. Weak Probability Logic With Infinitary Predicates. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 8 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/