Weak Probability Logic With Infinitary Predicates
Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 8
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We construct the logic
$L(V,\nu,\frak{m},R)$, as a logic with infinitary predicates,
generalized ordinary and probability quantifiers and propositional
connectives. An important feature of this logic is that infinitely many
variables can occur in a single formula, but only finitely many
quantifiers and connectives. We prove the weak completeness theorem
for this logic.
@article{PIM_1999_N_S_65_79_a1,
author = {Silvana Marinkovi\'c and Miodrag Ra\v{s}kovi\'c and Radosav {\DJ}or{\dj}evi\'c},
title = {Weak {Probability} {Logic} {With} {Infinitary} {Predicates}},
journal = {Publications de l'Institut Math\'ematique},
pages = {8 },
publisher = {mathdoc},
volume = {_N_S_65},
number = {79},
year = {1999},
zbl = {1006.03031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/}
}
TY - JOUR AU - Silvana Marinković AU - Miodrag Rašković AU - Radosav Đorđević TI - Weak Probability Logic With Infinitary Predicates JO - Publications de l'Institut Mathématique PY - 1999 SP - 8 VL - _N_S_65 IS - 79 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/ LA - en ID - PIM_1999_N_S_65_79_a1 ER -
%0 Journal Article %A Silvana Marinković %A Miodrag Rašković %A Radosav Đorđević %T Weak Probability Logic With Infinitary Predicates %J Publications de l'Institut Mathématique %D 1999 %P 8 %V _N_S_65 %N 79 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/ %G en %F PIM_1999_N_S_65_79_a1
Silvana Marinković; Miodrag Rašković; Radosav Đorđević. Weak Probability Logic With Infinitary Predicates. Publications de l'Institut Mathématique, _N_S_65 (1999) no. 79, p. 8 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_65_79_a1/