Orthogonal Polynomials on the Radial Rays and an Electrostatic Interpretation of Zeros
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 53
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For polynomials orthogonal on the radial rays in the complex
plane, which were introduced in [12], we give first a short
account, and then we develop two interesting classes of orthogonal
polynomials: (1) the generalized Hermite polynomials; (2) the
generalized Gegenbauer polynomials. For such polynomials we obtain the
corresponding linear differential equations of the second order.
Assuming a logarithmic potential, we give an electrostatic
interpretation of the zeros of the generalized Gegenbauer polynomials.
@article{PIM_1998_N_S_64_78_a5,
author = {Gradimir V. Milovanovi\'c},
title = {Orthogonal {Polynomials} on the {Radial} {Rays} and an {Electrostatic} {Interpretation} of {Zeros}},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
year = {1998},
volume = {_N_S_64},
number = {78},
zbl = {0973.33003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a5/}
}
TY - JOUR AU - Gradimir V. Milovanović TI - Orthogonal Polynomials on the Radial Rays and an Electrostatic Interpretation of Zeros JO - Publications de l'Institut Mathématique PY - 1998 SP - 53 VL - _N_S_64 IS - 78 UR - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a5/ LA - en ID - PIM_1998_N_S_64_78_a5 ER -
Gradimir V. Milovanović. Orthogonal Polynomials on the Radial Rays and an Electrostatic Interpretation of Zeros. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 53 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a5/