On a sum of Divisors Problem
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 9 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Several results concerning the set $\S$ are proved. This set was constructed by A. Granville as follows: Let $1\in\Cal S$, and for $n\in\Bbb N$ and $n>1$ let $n\in\Cal S$ if $\sum_{d|n,d
Classification : 11N25 11N37
Keywords: sum of divisors, perfect numbers, Mersenne primes
@article{PIM_1998_N_S_64_78_a2,
     author = {Jean-Marie De Koninck and Aleksandar Ivi\'c},
     title = {On a sum of {Divisors} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {9 },
     publisher = {mathdoc},
     volume = {_N_S_64},
     number = {78},
     year = {1998},
     zbl = {0993.11048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/}
}
TY  - JOUR
AU  - Jean-Marie De Koninck
AU  - Aleksandar Ivić
TI  - On a sum of Divisors Problem
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 9 
VL  - _N_S_64
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/
LA  - en
ID  - PIM_1998_N_S_64_78_a2
ER  - 
%0 Journal Article
%A Jean-Marie De Koninck
%A Aleksandar Ivić
%T On a sum of Divisors Problem
%J Publications de l'Institut Mathématique
%D 1998
%P 9 
%V _N_S_64
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/
%G en
%F PIM_1998_N_S_64_78_a2
Jean-Marie De Koninck; Aleksandar Ivić. On a sum of Divisors Problem. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/