On a sum of Divisors Problem
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 9
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Several results concerning the set $\S$ are proved. This
set was constructed by A. Granville as follows: Let $1\in\Cal S$, and
for $n\in\Bbb N$ and $n>1$ let $n\in\Cal S$ if
$\sum_{d|n,d
@article{PIM_1998_N_S_64_78_a2,
author = {Jean-Marie De Koninck and Aleksandar Ivi\'c},
title = {On a sum of {Divisors} {Problem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {9 },
year = {1998},
volume = {_N_S_64},
number = {78},
zbl = {0993.11048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/}
}
Jean-Marie De Koninck; Aleksandar Ivić. On a sum of Divisors Problem. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a2/