Classical Integrable Mechanical Systems and Their Integrable Perturbations
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 153 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Perturbation technic for constructing new integrable systems which are close to the most celebrated integrable systems in classical mechanics are developed. Analytical conditions for the periodicity of billiard trajectories with the ellipsoid are given, generalizing the Cayley condition for the Poncelet Theorem.
Classification : 58F05
@article{PIM_1998_N_S_64_78_a12,
     author = {Vladimir Dragovi\'c},
     title = {Classical {Integrable} {Mechanical} {Systems} and {Their} {Integrable} {Perturbations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {153 },
     publisher = {mathdoc},
     volume = {_N_S_64},
     number = {78},
     year = {1998},
     zbl = {0999.37038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a12/}
}
TY  - JOUR
AU  - Vladimir Dragović
TI  - Classical Integrable Mechanical Systems and Their Integrable Perturbations
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 153 
VL  - _N_S_64
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a12/
LA  - en
ID  - PIM_1998_N_S_64_78_a12
ER  - 
%0 Journal Article
%A Vladimir Dragović
%T Classical Integrable Mechanical Systems and Their Integrable Perturbations
%J Publications de l'Institut Mathématique
%D 1998
%P 153 
%V _N_S_64
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a12/
%G en
%F PIM_1998_N_S_64_78_a12
Vladimir Dragović. Classical Integrable Mechanical Systems and Their Integrable Perturbations. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 153 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a12/