Cauchy Nets and Open Colorings
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 146

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Open Coloring Axiom, OCA, (see [6]) is used to prove that $\Bbb R^{\Bbb N}$ equipped with a natural uniform structure is complete, answering a question from [3].
Classification : 54E15 54A20 03E35
@article{PIM_1998_N_S_64_78_a11,
     author = {Ilijas Farah},
     title = {Cauchy {Nets} and {Open} {Colorings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {146 },
     publisher = {mathdoc},
     volume = {_N_S_64},
     number = {78},
     year = {1998},
     zbl = {0988.54028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/}
}
TY  - JOUR
AU  - Ilijas Farah
TI  - Cauchy Nets and Open Colorings
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 146 
VL  - _N_S_64
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/
LA  - en
ID  - PIM_1998_N_S_64_78_a11
ER  - 
%0 Journal Article
%A Ilijas Farah
%T Cauchy Nets and Open Colorings
%J Publications de l'Institut Mathématique
%D 1998
%P 146 
%V _N_S_64
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/
%G en
%F PIM_1998_N_S_64_78_a11
Ilijas Farah. Cauchy Nets and Open Colorings. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 146 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/