Cauchy Nets and Open Colorings
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 146 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Open Coloring Axiom, OCA, (see [6]) is used to prove that $\Bbb R^{\Bbb N}$ equipped with a natural uniform structure is complete, answering a question from [3].
Classification : 54E15 54A20 03E35
@article{PIM_1998_N_S_64_78_a11,
     author = {Ilijas Farah},
     title = {Cauchy {Nets} and {Open} {Colorings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {146 },
     publisher = {mathdoc},
     volume = {_N_S_64},
     number = {78},
     year = {1998},
     zbl = {0988.54028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/}
}
TY  - JOUR
AU  - Ilijas Farah
TI  - Cauchy Nets and Open Colorings
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 146 
VL  - _N_S_64
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/
LA  - en
ID  - PIM_1998_N_S_64_78_a11
ER  - 
%0 Journal Article
%A Ilijas Farah
%T Cauchy Nets and Open Colorings
%J Publications de l'Institut Mathématique
%D 1998
%P 146 
%V _N_S_64
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/
%G en
%F PIM_1998_N_S_64_78_a11
Ilijas Farah. Cauchy Nets and Open Colorings. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 146 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a11/