Spectral Invariants of Affine Hypersurfaces
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 133
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $M$ be a smooth compact manifold of dimension $m$ with
smooth, possibly empty, boundary $\partial M$. If $g$ is a Riemannian
metric on $M$ and if $\nabla$ is an affine connection, let
$D=D(g,\nabla)$ be the trace of the normalized Hessian; if $\partial M$
is empty, then we impose Dirichlet boundary conditions. The structures
$(g,\nabla)$ arise naturally in the context of affine differential
geometry and we give geometric conditions which ensure that $D$ is
formally self-adjoint in this setting. We study the asymptotics of the
heat equation trace; we have that $a_m(D)$ is an affine invariant. We
use the asymptotics of the heat equation to study the affine geometry
of affine hypersurfaces.
Classification :
53A15 58G25
Keywords: Operators of Laplace type, the Hessian, hypersurface immersed in affine space, the heat equation
Keywords: Operators of Laplace type, the Hessian, hypersurface immersed in affine space, the heat equation
@article{PIM_1998_N_S_64_78_a10,
author = {Neda Bokan and Peter Gilkey and Udo Simon},
title = {Spectral {Invariants} of {Affine} {Hypersurfaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {133 },
year = {1998},
volume = {_N_S_64},
number = {78},
zbl = {0999.58014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a10/}
}
Neda Bokan; Peter Gilkey; Udo Simon. Spectral Invariants of Affine Hypersurfaces. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 133 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a10/