On Free Boolean Vectors
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 2 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $f(x_1,x_2,\ldots,x_n)$ be a Boolean expression in $n$ variables $x_1,x_2,\ldots,x_n$. A method for checking if the identity $f(x_1,x_2,\ldots,x_n)=1$ is valid for all boolean values of $x_1,x_2,\ldots,x_n$ is proposed, based on the parallel structure of a computer k-bit processor. We give a construction of $n$ boolean vectors $(b_1,b_2,\ldots,b_n)$ of the size $2^n$ with the following property: $ \text{\it If}\enskip f(b_1,b_2,łdots,b_n)=1, \enskip \text{\it then}\enskip f(x_1,x_2,łdots,x_n)\enskip \text{\it is identically equal to one}. $ In this case, the necessary number of computing steps for checking the identity $f(b_1,b_2,\ldots,b_n)=1$ is $2^{n-k}$, to be compared with the number of $2^n$ computing steps in the usual table-checking procedure. The complete characterization of vectors $(b_1,b_2,\ldots,b_n)$ is given.
Classification : 03G05 06E30 94C10
@article{PIM_1998_N_S_64_78_a1,
     author = {\v{Z}arko Mijajlovi\'c},
     title = {On {Free} {Boolean} {Vectors}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {2 },
     publisher = {mathdoc},
     volume = {_N_S_64},
     number = {78},
     year = {1998},
     zbl = {0989.06011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/}
}
TY  - JOUR
AU  - Žarko Mijajlović
TI  - On Free Boolean Vectors
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 2 
VL  - _N_S_64
IS  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/
LA  - en
ID  - PIM_1998_N_S_64_78_a1
ER  - 
%0 Journal Article
%A Žarko Mijajlović
%T On Free Boolean Vectors
%J Publications de l'Institut Mathématique
%D 1998
%P 2 
%V _N_S_64
%N 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/
%G en
%F PIM_1998_N_S_64_78_a1
Žarko Mijajlović. On Free Boolean Vectors. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 2 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/