On Free Boolean Vectors
Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 2
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f(x_1,x_2,\ldots,x_n)$ be a Boolean expression in $n$
variables $x_1,x_2,\ldots,x_n$. A method for checking if the identity
$f(x_1,x_2,\ldots,x_n)=1$ is valid for all boolean values of
$x_1,x_2,\ldots,x_n$ is proposed, based on the parallel structure of a
computer k-bit processor. We give a construction of $n$ boolean
vectors $(b_1,b_2,\ldots,b_n)$ of the size $2^n$ with the following
property:
$
\text{\it If}\enskip f(b_1,b_2,łdots,b_n)=1, \enskip
\text{\it then}\enskip f(x_1,x_2,łdots,x_n)\enskip
\text{\it is identically equal to one}.
$
In this case, the necessary number of computing steps for checking the
identity $f(b_1,b_2,\ldots,b_n)=1$ is $2^{n-k}$, to be compared with
the number of $2^n$ computing steps in the usual table-checking
procedure. The complete characterization of vectors
$(b_1,b_2,\ldots,b_n)$ is given.
@article{PIM_1998_N_S_64_78_a1,
author = {\v{Z}arko Mijajlovi\'c},
title = {On {Free} {Boolean} {Vectors}},
journal = {Publications de l'Institut Math\'ematique},
pages = {2 },
year = {1998},
volume = {_N_S_64},
number = {78},
zbl = {0989.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/}
}
Žarko Mijajlović. On Free Boolean Vectors. Publications de l'Institut Mathématique, _N_S_64 (1998) no. 78, p. 2 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_64_78_a1/