On Sets of Periodic and of Recurrent Points
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It is shown that if a continuum $X$ contains the Gehman
dendrite as its retract, then there exists a mapping $f$ of $X$ such
that the closure of the set of periodic points of $f$ is a proper
subset of the closure of the set of recurrent points of $f$. Other
continua with this property are presented, and a number of related
questions are asked.
Classification :
54F20 54F50
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
@article{PIM_1998_N_S_63_77_a13,
author = {Janusz J. Charatonik},
title = {On {Sets} of {Periodic} and of {Recurrent} {Points}},
journal = {Publications de l'Institut Math\'ematique},
pages = {131 },
publisher = {mathdoc},
volume = {_N_S_63},
number = {77},
year = {1998},
zbl = {0942.54029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/}
}
Janusz J. Charatonik. On Sets of Periodic and of Recurrent Points. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/