On Sets of Periodic and of Recurrent Points
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is shown that if a continuum $X$ contains the Gehman dendrite as its retract, then there exists a mapping $f$ of $X$ such that the closure of the set of periodic points of $f$ is a proper subset of the closure of the set of recurrent points of $f$. Other continua with this property are presented, and a number of related questions are asked.
Classification : 54F20 54F50
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
@article{PIM_1998_N_S_63_77_a13,
     author = {Janusz J. Charatonik},
     title = {On {Sets} of {Periodic} and of {Recurrent} {Points}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {131 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0942.54029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/}
}
TY  - JOUR
AU  - Janusz J. Charatonik
TI  - On Sets of Periodic and of Recurrent Points
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 131 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/
LA  - en
ID  - PIM_1998_N_S_63_77_a13
ER  - 
%0 Journal Article
%A Janusz J. Charatonik
%T On Sets of Periodic and of Recurrent Points
%J Publications de l'Institut Mathématique
%D 1998
%P 131 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/
%G en
%F PIM_1998_N_S_63_77_a13
Janusz J. Charatonik. On Sets of Periodic and of Recurrent Points. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/