On Sets of Periodic and of Recurrent Points
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It is shown that if a continuum $X$ contains the Gehman
dendrite as its retract, then there exists a mapping $f$ of $X$ such
that the closure of the set of periodic points of $f$ is a proper
subset of the closure of the set of recurrent points of $f$. Other
continua with this property are presented, and a number of related
questions are asked.
Classification :
54F20 54F50
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
@article{PIM_1998_N_S_63_77_a13,
author = {Janusz J. Charatonik},
title = {On {Sets} of {Periodic} and of {Recurrent} {Points}},
journal = {Publications de l'Institut Math\'ematique},
pages = {131 },
year = {1998},
volume = {_N_S_63},
number = {77},
zbl = {0942.54029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/}
}
Janusz J. Charatonik. On Sets of Periodic and of Recurrent Points. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/