On Sets of Periodic and of Recurrent Points
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is shown that if a continuum $X$ contains the Gehman dendrite as its retract, then there exists a mapping $f$ of $X$ such that the closure of the set of periodic points of $f$ is a proper subset of the closure of the set of recurrent points of $f$. Other continua with this property are presented, and a number of related questions are asked.
Classification : 54F20 54F50
Keywords: dendrite, nonwandering point, periodic point, recurrent point, retraction
@article{PIM_1998_N_S_63_77_a13,
     author = {Janusz J. Charatonik},
     title = {On {Sets} of {Periodic} and of {Recurrent} {Points}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {131 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0942.54029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/}
}
TY  - JOUR
AU  - Janusz J. Charatonik
TI  - On Sets of Periodic and of Recurrent Points
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 131 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/
LA  - en
ID  - PIM_1998_N_S_63_77_a13
ER  - 
%0 Journal Article
%A Janusz J. Charatonik
%T On Sets of Periodic and of Recurrent Points
%J Publications de l'Institut Mathématique
%D 1998
%P 131 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/
%G en
%F PIM_1998_N_S_63_77_a13
Janusz J. Charatonik. On Sets of Periodic and of Recurrent Points. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a13/