A new Proof of a Theorem of Belov
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 102
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Belov in [2] gave necessary and sufficient condition
for rotational surface generated by a special quadrangular meridian, to
be rigid. Belov's theorem disproved the hypothesis of Boyarski that
each toroid rotational surface with convex meridian is rigid. We give
another proof of Belov's theorem. The field of infinitesimal bendings
is determined, the rotational field is obtained too. The method, used
here, can be applied in a case of every rotational surface generated by
a simple polygon [6].
Classification :
53A05
Keywords: Infinitesimal bending, rigidity, fields of bendings and rotations
Keywords: Infinitesimal bending, rigidity, fields of bendings and rotations
@article{PIM_1998_N_S_63_77_a11,
author = {Ljubica S. Velimirovi\'c},
title = {A new {Proof} of a {Theorem} of {Belov}},
journal = {Publications de l'Institut Math\'ematique},
pages = {102 },
publisher = {mathdoc},
volume = {_N_S_63},
number = {77},
year = {1998},
zbl = {0970.53005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/}
}
Ljubica S. Velimirović. A new Proof of a Theorem of Belov. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/