A new Proof of a Theorem of Belov
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 102 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Belov in [2] gave necessary and sufficient condition for rotational surface generated by a special quadrangular meridian, to be rigid. Belov's theorem disproved the hypothesis of Boyarski that each toroid rotational surface with convex meridian is rigid. We give another proof of Belov's theorem. The field of infinitesimal bendings is determined, the rotational field is obtained too. The method, used here, can be applied in a case of every rotational surface generated by a simple polygon [6].
Classification : 53A05
Keywords: Infinitesimal bending, rigidity, fields of bendings and rotations
@article{PIM_1998_N_S_63_77_a11,
     author = {Ljubica S. Velimirovi\'c},
     title = {A new {Proof} of a {Theorem} of {Belov}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {102 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0970.53005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/}
}
TY  - JOUR
AU  - Ljubica S. Velimirović
TI  - A new Proof of a Theorem of Belov
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 102 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/
LA  - en
ID  - PIM_1998_N_S_63_77_a11
ER  - 
%0 Journal Article
%A Ljubica S. Velimirović
%T A new Proof of a Theorem of Belov
%J Publications de l'Institut Mathématique
%D 1998
%P 102 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/
%G en
%F PIM_1998_N_S_63_77_a11
Ljubica S. Velimirović. A new Proof of a Theorem of Belov. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a11/