Constructing Kripke Models of Certain Fragments of Heyting's Arithmetic
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present nontrivial methods of constructing Kripke models
for the fragments of HA obtained by restricting the induction
schema to instances with ${\varPi}_1$- and ${\varPi}_2$-induction
formulae respectively. The model construction for
${\varPi}_1$-induction was applied in [W96a] and [W97] to
investigate the provably recursive functions of this theory. The
construction of ${\varPi}_2$-induction models is a modification of
Smorynski's collection operation introduced in [S73].
@article{PIM_1998_N_S_63_77_a0,
author = {Kai F. Wehmeier},
title = {Constructing {Kripke} {Models} of {Certain} {Fragments} of {Heyting's} {Arithmetic}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
publisher = {mathdoc},
volume = {_N_S_63},
number = {77},
year = {1998},
zbl = {0946.03070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a0/}
}
TY - JOUR AU - Kai F. Wehmeier TI - Constructing Kripke Models of Certain Fragments of Heyting's Arithmetic JO - Publications de l'Institut Mathématique PY - 1998 SP - 1 VL - _N_S_63 IS - 77 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a0/ LA - en ID - PIM_1998_N_S_63_77_a0 ER -
Kai F. Wehmeier. Constructing Kripke Models of Certain Fragments of Heyting's Arithmetic. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 1 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a0/