Asymptotic Behavior of Singular Values of Certain Integral Operators
Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 83
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The exact asymptotics of singular values of a fractional integral
operator
$
I^\alpha\cdot=\intłimits^x_0{(x-y)^{\alpha-1}\over\Gamma(\alpha)}\cdot dy
$
for $1/2\alpha$ is found. The results related to asymptotic behavior of
singular values of convolution operators similar to fractional integral
operator are given. We also obtained a result about the asymptotic behavior
of convolution operators with logarithm-singularity.
@article{PIM_1997_N_S_62_76_a9,
author = {Milutin Dostani\'c and Darko Milinkovi\'c},
title = {Asymptotic {Behavior} of {Singular} {Values} of {Certain} {Integral} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {83 },
year = {1997},
volume = {_N_S_62},
number = {76},
zbl = {0887.45002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a9/}
}
TY - JOUR AU - Milutin Dostanić AU - Darko Milinković TI - Asymptotic Behavior of Singular Values of Certain Integral Operators JO - Publications de l'Institut Mathématique PY - 1997 SP - 83 VL - _N_S_62 IS - 76 UR - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a9/ LA - en ID - PIM_1997_N_S_62_76_a9 ER -
Milutin Dostanić; Darko Milinković. Asymptotic Behavior of Singular Values of Certain Integral Operators. Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 83 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a9/