Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 p = 1
Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 76 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $B^n$ be the unit ball in $C^n$, $S$ is the boundary of $B^n$. Let $L^p(S)$ denote the usual Lebesgue spaces over $S$ with respect to the normalized surface measure, $H^p_m (B^n)$ is the Hardy space of $M$-harmonic functions and $H^p_{at} (S)$ denotes the atomic Hardy spaces defined in [4]. Let $P: L^2 (S)\to H^2_m (B^n)$ denote the Poisson--Szëgo projection. We use $M_f :L^p(S)\to L^p(S)$ to denote the multiplication operator, and we define the Toeplitz operator $T_f = PM_f$. The paper gives characterization theorems on $f$ such that the Toeplitz operator $T_f$ is bounded from $H^p_{at} (S)\to H^p_m (B^n)$ with $0
Classification : 47G10 47B35
@article{PIM_1997_N_S_62_76_a8,
     author = {Miroljub Jevti\'c},
     title = {Toeplitz {Operators} on m-harmonic {Hardy} {Space} {Hpm(s)} with 0 < p <= 1},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {76 },
     publisher = {mathdoc},
     volume = {_N_S_62},
     number = {76},
     year = {1997},
     zbl = {0999.32500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/}
}
TY  - JOUR
AU  - Miroljub Jevtić
TI  - Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 < p <= 1
JO  - Publications de l'Institut Mathématique
PY  - 1997
SP  - 76 
VL  - _N_S_62
IS  - 76
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/
LA  - en
ID  - PIM_1997_N_S_62_76_a8
ER  - 
%0 Journal Article
%A Miroljub Jevtić
%T Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 < p <= 1
%J Publications de l'Institut Mathématique
%D 1997
%P 76 
%V _N_S_62
%N 76
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/
%G en
%F PIM_1997_N_S_62_76_a8
Miroljub Jevtić. Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 < p <= 1. Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 76 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/