Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 p = 1
Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 76
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $B^n$ be the unit ball in $C^n$, $S$ is the boundary of
$B^n$. Let $L^p(S)$ denote the usual Lebesgue spaces over $S$ with respect
to the normalized surface measure, $H^p_m (B^n)$ is the Hardy space of
$M$-harmonic functions and $H^p_{at} (S)$ denotes the atomic Hardy spaces
defined in [4]. Let $P: L^2 (S)\to H^2_m (B^n)$ denote the
Poisson--Szëgo projection. We use $M_f :L^p(S)\to L^p(S)$ to
denote the multiplication operator, and we define the Toeplitz operator $T_f
= PM_f$. The paper gives characterization theorems on $f$ such that the
Toeplitz operator $T_f$ is bounded from $H^p_{at} (S)\to H^p_m
(B^n)$ with $0
@article{PIM_1997_N_S_62_76_a8,
author = {Miroljub Jevti\'c},
title = {Toeplitz {Operators} on m-harmonic {Hardy} {Space} {Hpm(s)} with 0 < p <= 1},
journal = {Publications de l'Institut Math\'ematique},
pages = {76 },
year = {1997},
volume = {_N_S_62},
number = {76},
zbl = {0999.32500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/}
}
Miroljub Jevtić. Toeplitz Operators on m-harmonic Hardy Space Hpm(s) with 0 < p <= 1. Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 76 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a8/