On Absolutely Closed Multivalued Mappings of Topological Spaces
Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 120
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present results concerning absolute closeness of
multivalued mappings for some well-known classes of pointwise closed
mappings. The main results are the characterizations of absolute
closeness for cofinally continuous and for residually continuous
multivalued mappings. We found necessary and sufficient conditions so
that the multivalued mapping $F:X\longrightarrow Y$ cannot be extended
to a cofinally or a residually continuous mapping $F:X^*\longrightarrow
Y$ from a space $X^*$ in which $X$ is a proper dense subset. We also
proved some characterizations of cofinally and residually continuous
mappings.
@article{PIM_1997_N_S_62_76_a13,
author = {Miodrag Mi\v{s}i\'c},
title = {On {Absolutely} {Closed} {Multivalued} {Mappings} of {Topological} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {120 },
year = {1997},
volume = {_N_S_62},
number = {76},
zbl = {0885.54015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a13/}
}
Miodrag Mišić. On Absolutely Closed Multivalued Mappings of Topological Spaces. Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 120 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a13/