The First Order PDE System for Type III Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 113
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Timelike and spacelike Osserman manifolds of signature
$(2,2)$ are defined in terms of the characteristic and minimal
polynomials of the Jacobi operator (for details see [BBR]). Osserman
manifolds with the diagonalizable Jacobi operator are characterized as
rank-one symmetric spaces or flat. Geometry of Osserman manifolds with
nondiagonalizable Jacobi operator is not yet completely clarified. Some
partial answers can be found in [BBR], [BBRa], [BBRb]. In the most
general case the Osserman type condition can be expressed in terms of
the second order PDE system. In this paper we derive the first order
PDE system characterizing Osserman manifolds when the minimal
polynomial has a triple zero.
@article{PIM_1997_N_S_62_76_a12,
author = {Novica Bla\v{z}i\'c and Neda Bokan and Zoran Raki\'c},
title = {The {First} {Order} {PDE} {System} for {Type} {III} {Osserman} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {113 },
publisher = {mathdoc},
volume = {_N_S_62},
number = {76},
year = {1997},
zbl = {0949.53016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a12/}
}
TY - JOUR AU - Novica Blažić AU - Neda Bokan AU - Zoran Rakić TI - The First Order PDE System for Type III Osserman Manifolds JO - Publications de l'Institut Mathématique PY - 1997 SP - 113 VL - _N_S_62 IS - 76 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a12/ LA - en ID - PIM_1997_N_S_62_76_a12 ER -
%0 Journal Article %A Novica Blažić %A Neda Bokan %A Zoran Rakić %T The First Order PDE System for Type III Osserman Manifolds %J Publications de l'Institut Mathématique %D 1997 %P 113 %V _N_S_62 %N 76 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a12/ %G en %F PIM_1997_N_S_62_76_a12
Novica Blažić; Neda Bokan; Zoran Rakić. The First Order PDE System for Type III Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_62 (1997) no. 76, p. 113 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_62_76_a12/