O-regularly Varying Functions and Some Asymptotic Relations
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 44
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that in the class of measurable positive functions
defined on the interval $I_a = [\,a,+\infty )$ $(a > 0)$, the class of
functions which preserve the strong asymptotic equivalence on the set
of functions $\{x \,\colon I_a \mapsto \Bbb R^+ ,\,
x(t) \to +\infty, t \to +\infty \}$,
is a class of $\Cal O$--regularly varying functions with continuous
index function. We also prove a representation theorem for functions
from this class, and a morphism-theorem for some asymptotic
relations.
@article{PIM_1997_N_S_61_75_a6,
author = {Dragan {\DJ}ur\v{c}i\'c},
title = {O-regularly {Varying} {Functions} and {Some} {Asymptotic} {Relations}},
journal = {Publications de l'Institut Math\'ematique},
pages = {44 },
year = {1997},
volume = {_N_S_61},
number = {75},
zbl = {0901.26002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a6/}
}
Dragan Đurčić. O-regularly Varying Functions and Some Asymptotic Relations. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 44 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a6/