It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We provide an example of a model of ZFC in which there exists an $\eta_1$-ordered real closed field which is not a hyper-real field.
Classification : 12J15 03E05
@article{PIM_1997_N_S_61_75_a2,
     author = {Jadran Stojanovi\'c and \v{Z}ikica Perovi\'c},
     title = {It is {Consistent} {That} {There} {Exists} an eta1-ordered {Real} {Closed} {Field} {Which} is not {Hyper-real}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_61},
     number = {75},
     year = {1997},
     zbl = {0999.12501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/}
}
TY  - JOUR
AU  - Jadran Stojanović
AU  - Žikica Perović
TI  - It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
JO  - Publications de l'Institut Mathématique
PY  - 1997
SP  - 17 
VL  - _N_S_61
IS  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/
LA  - en
ID  - PIM_1997_N_S_61_75_a2
ER  - 
%0 Journal Article
%A Jadran Stojanović
%A Žikica Perović
%T It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
%J Publications de l'Institut Mathématique
%D 1997
%P 17 
%V _N_S_61
%N 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/
%G en
%F PIM_1997_N_S_61_75_a2
Jadran Stojanović; Žikica Perović. It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/