It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We provide an example of a model of ZFC in which there
exists an $\eta_1$-ordered real closed field which is not a hyper-real
field.
@article{PIM_1997_N_S_61_75_a2,
author = {Jadran Stojanovi\'c and \v{Z}ikica Perovi\'c},
title = {It is {Consistent} {That} {There} {Exists} an eta1-ordered {Real} {Closed} {Field} {Which} is not {Hyper-real}},
journal = {Publications de l'Institut Math\'ematique},
pages = {17 },
year = {1997},
volume = {_N_S_61},
number = {75},
zbl = {0999.12501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/}
}
TY - JOUR AU - Jadran Stojanović AU - Žikica Perović TI - It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real JO - Publications de l'Institut Mathématique PY - 1997 SP - 17 VL - _N_S_61 IS - 75 UR - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/ LA - en ID - PIM_1997_N_S_61_75_a2 ER -
%0 Journal Article %A Jadran Stojanović %A Žikica Perović %T It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real %J Publications de l'Institut Mathématique %D 1997 %P 17 %V _N_S_61 %N 75 %U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/ %G en %F PIM_1997_N_S_61_75_a2
Jadran Stojanović; Žikica Perović. It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/