It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We provide an example of a model of ZFC in which there exists an $\eta_1$-ordered real closed field which is not a hyper-real field.
Classification : 12J15 03E05
@article{PIM_1997_N_S_61_75_a2,
     author = {Jadran Stojanovi\'c and \v{Z}ikica Perovi\'c},
     title = {It is {Consistent} {That} {There} {Exists} an eta1-ordered {Real} {Closed} {Field} {Which} is not {Hyper-real}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_61},
     number = {75},
     year = {1997},
     zbl = {0999.12501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/}
}
TY  - JOUR
AU  - Jadran Stojanović
AU  - Žikica Perović
TI  - It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
JO  - Publications de l'Institut Mathématique
PY  - 1997
SP  - 17 
VL  - _N_S_61
IS  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/
LA  - en
ID  - PIM_1997_N_S_61_75_a2
ER  - 
%0 Journal Article
%A Jadran Stojanović
%A Žikica Perović
%T It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real
%J Publications de l'Institut Mathématique
%D 1997
%P 17 
%V _N_S_61
%N 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/
%G en
%F PIM_1997_N_S_61_75_a2
Jadran Stojanović; Žikica Perović. It is Consistent That There Exists an eta1-ordered Real Closed Field Which is not Hyper-real. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a2/