Restricted Convergence and P-max Stable Laws
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 153
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Nondegenerate limit laws for maxima of iid random variables
with power normalization are called $p$-max stable laws. We prove that
if maxima of iid random variables with power normalization converge
weakly on a bounded interval, they converge for every $x\in R$.
@article{PIM_1997_N_S_61_75_a17,
author = {Slobodanka Jankovi\'c},
title = {Restricted {Convergence} and {P-max} {Stable} {Laws}},
journal = {Publications de l'Institut Math\'ematique},
pages = {153 },
publisher = {mathdoc},
volume = {_N_S_61},
number = {75},
year = {1997},
zbl = {0955.60058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a17/}
}
Slobodanka Janković. Restricted Convergence and P-max Stable Laws. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 153 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a17/