Normal Flows and Harmonic Manifolds
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 105
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that a $2$-stein space equipped with a non-vanishing
vector field $\xi$ such that the $\xi$-sectional curvature is
pointwise constant is a space of constant sectional curvature. From
this it then follows that a harmonic space equipped with a unit
Killing vector field such that its flow is normal, has constant
sectional curvature.
@article{PIM_1997_N_S_61_75_a12,
author = {J. C. Gonz\'alez-D\'avila and L. Vanhecke},
title = {Normal {Flows} and {Harmonic} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {105 },
publisher = {mathdoc},
volume = {_N_S_61},
number = {75},
year = {1997},
zbl = {0885.53049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a12/}
}
J. C. González-Dávila; L. Vanhecke. Normal Flows and Harmonic Manifolds. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 105 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a12/