On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The properties of Riemannian manifolds admitting a semi-symmetric
metric connection were studied by many authors ([1], [2],
[3], [4], [5], [6]). In [4] an expression
of the curvature tensor of a manifold was obtained under assumption
that the manifold admits a semi-symmetric metric connection with
vanishing curvature tensor and recurrent torsion tensor. Also in [7]
Prvanović and Pušić obtained an expression for curvature
tensor of a Riemannian manifold, locally decomposable Riemannian space
and the Kähler space which admits a semi-symmetric metric connection
$\tilde\nabla $ with vanishing curvature tensor and torsion tensor
$T^h_{1m}$ satisfying
$\tilde\nabla_k\tilde\nabla_j T^h_{1m}-\tilde\nabla_j\tilde\nabla_k T^h_{1m}
=0$.We study a type of semi-symmetric metric connection $\tilde\nabla$
satisfying $\tilde R (X, Y)T=0$ and $\omega(\tilde R(X,Y)Z)=0$, where
$T$ is the torsion tensor of the semi-symmetric connection, $\tilde R$
is the curvature tensor corresponding to $\tilde\nabla$ and $\omega$
is the associated 1-form of $T$.
@article{PIM_1997_N_S_61_75_a10,
author = {U.C. De and S.C. Biswas},
title = {On a {Type} of {Semi-symmetric} {Metric} {Connection} on a {Riemannian} {Manifold}},
journal = {Publications de l'Institut Math\'ematique},
pages = {90 },
year = {1997},
volume = {_N_S_61},
number = {75},
zbl = {0999.53022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/}
}
TY - JOUR AU - U.C. De AU - S.C. Biswas TI - On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold JO - Publications de l'Institut Mathématique PY - 1997 SP - 90 VL - _N_S_61 IS - 75 UR - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/ LA - en ID - PIM_1997_N_S_61_75_a10 ER -
U.C. De; S.C. Biswas. On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/