On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The properties of Riemannian manifolds admitting a semi-symmetric metric connection were studied by many authors ([1], [2], [3], [4], [5], [6]). In [4] an expression of the curvature tensor of a manifold was obtained under assumption that the manifold admits a semi-symmetric metric connection with vanishing curvature tensor and recurrent torsion tensor. Also in [7] Prvanović and Pušić obtained an expression for curvature tensor of a Riemannian manifold, locally decomposable Riemannian space and the Kähler space which admits a semi-symmetric metric connection $\tilde\nabla $ with vanishing curvature tensor and torsion tensor $T^h_{1m}$ satisfying $\tilde\nabla_k\tilde\nabla_j T^h_{1m}-\tilde\nabla_j\tilde\nabla_k T^h_{1m} =0$.We study a type of semi-symmetric metric connection $\tilde\nabla$ satisfying $\tilde R (X, Y)T=0$ and $\omega(\tilde R(X,Y)Z)=0$, where $T$ is the torsion tensor of the semi-symmetric connection, $\tilde R$ is the curvature tensor corresponding to $\tilde\nabla$ and $\omega$ is the associated 1-form of $T$.
Classification : 53C05
@article{PIM_1997_N_S_61_75_a10,
     author = {U.C. De and S.C. Biswas},
     title = {On a {Type} of {Semi-symmetric} {Metric} {Connection} on a {Riemannian} {Manifold}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {90 },
     publisher = {mathdoc},
     volume = {_N_S_61},
     number = {75},
     year = {1997},
     zbl = {0999.53022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/}
}
TY  - JOUR
AU  - U.C. De
AU  - S.C. Biswas
TI  - On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
JO  - Publications de l'Institut Mathématique
PY  - 1997
SP  - 90 
VL  - _N_S_61
IS  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/
LA  - en
ID  - PIM_1997_N_S_61_75_a10
ER  - 
%0 Journal Article
%A U.C. De
%A S.C. Biswas
%T On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
%J Publications de l'Institut Mathématique
%D 1997
%P 90 
%V _N_S_61
%N 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/
%G en
%F PIM_1997_N_S_61_75_a10
U.C. De; S.C. Biswas. On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/