On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The properties of Riemannian manifolds admitting a semi-symmetric metric connection were studied by many authors ([1], [2], [3], [4], [5], [6]). In [4] an expression of the curvature tensor of a manifold was obtained under assumption that the manifold admits a semi-symmetric metric connection with vanishing curvature tensor and recurrent torsion tensor. Also in [7] Prvanović and Pušić obtained an expression for curvature tensor of a Riemannian manifold, locally decomposable Riemannian space and the Kähler space which admits a semi-symmetric metric connection $\tilde\nabla $ with vanishing curvature tensor and torsion tensor $T^h_{1m}$ satisfying $\tilde\nabla_k\tilde\nabla_j T^h_{1m}-\tilde\nabla_j\tilde\nabla_k T^h_{1m} =0$.We study a type of semi-symmetric metric connection $\tilde\nabla$ satisfying $\tilde R (X, Y)T=0$ and $\omega(\tilde R(X,Y)Z)=0$, where $T$ is the torsion tensor of the semi-symmetric connection, $\tilde R$ is the curvature tensor corresponding to $\tilde\nabla$ and $\omega$ is the associated 1-form of $T$.
Classification : 53C05
@article{PIM_1997_N_S_61_75_a10,
     author = {U.C. De and S.C. Biswas},
     title = {On a {Type} of {Semi-symmetric} {Metric} {Connection} on a {Riemannian} {Manifold}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {90 },
     publisher = {mathdoc},
     volume = {_N_S_61},
     number = {75},
     year = {1997},
     zbl = {0999.53022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/}
}
TY  - JOUR
AU  - U.C. De
AU  - S.C. Biswas
TI  - On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
JO  - Publications de l'Institut Mathématique
PY  - 1997
SP  - 90 
VL  - _N_S_61
IS  - 75
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/
LA  - en
ID  - PIM_1997_N_S_61_75_a10
ER  - 
%0 Journal Article
%A U.C. De
%A S.C. Biswas
%T On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold
%J Publications de l'Institut Mathématique
%D 1997
%P 90 
%V _N_S_61
%N 75
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/
%G en
%F PIM_1997_N_S_61_75_a10
U.C. De; S.C. Biswas. On a Type of Semi-symmetric Metric Connection on a Riemannian Manifold. Publications de l'Institut Mathématique, _N_S_61 (1997) no. 75, p. 90 . http://geodesic.mathdoc.fr/item/PIM_1997_N_S_61_75_a10/