Paraquaternionic Projective Space and Pseudo-Riemannian Geometry
Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 101 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A natural and geometrical definition of projective space $(P_n(\Bbb B),g_0)$, based on the algebra of paraquaternionic numbers $\Bbb B$, is given. Using the technique of pseudo-Riemannian submersions, we determine the curvature of the paraquaternionic space $(P_n(\Bbb B),g_0)$. Moreover, the properties of this curvatures are studied.
Classification : 53C15 53C50
@article{PIM_1996_N_S_60_74_a10,
     author = {Novica Bla\v{z}i\'c},
     title = {Paraquaternionic {Projective} {Space} and {Pseudo-Riemannian} {Geometry}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_60},
     number = {74},
     year = {1996},
     zbl = {1002.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/}
}
TY  - JOUR
AU  - Novica Blažić
TI  - Paraquaternionic Projective Space and Pseudo-Riemannian Geometry
JO  - Publications de l'Institut Mathématique
PY  - 1996
SP  - 101 
VL  - _N_S_60
IS  - 74
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/
LA  - en
ID  - PIM_1996_N_S_60_74_a10
ER  - 
%0 Journal Article
%A Novica Blažić
%T Paraquaternionic Projective Space and Pseudo-Riemannian Geometry
%J Publications de l'Institut Mathématique
%D 1996
%P 101 
%V _N_S_60
%N 74
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/
%G en
%F PIM_1996_N_S_60_74_a10
Novica Blažić. Paraquaternionic Projective Space and Pseudo-Riemannian Geometry. Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/