Paraquaternionic Projective Space and Pseudo-Riemannian Geometry
Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 101
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A natural and geometrical definition of projective space
$(P_n(\Bbb B),g_0)$, based on the algebra of paraquaternionic numbers
$\Bbb B$, is given. Using the technique of pseudo-Riemannian submersions,
we determine the curvature of the paraquaternionic space
$(P_n(\Bbb B),g_0)$. Moreover, the properties of this curvatures are
studied.
@article{PIM_1996_N_S_60_74_a10,
author = {Novica Bla\v{z}i\'c},
title = {Paraquaternionic {Projective} {Space} and {Pseudo-Riemannian} {Geometry}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
publisher = {mathdoc},
volume = {_N_S_60},
number = {74},
year = {1996},
zbl = {1002.53020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/}
}
Novica Blažić. Paraquaternionic Projective Space and Pseudo-Riemannian Geometry. Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a10/