Asymptotic Behavior of Eigenvalues of Certain Integral Operators
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We find exact asymptotic behavior of positive and negative
eigenvalues of the operator $\int_\Omega k(x-y)a(y)\cdot dy$, where
$k$ is a real radial nonhomogenous function (satisfying some aditional
condition) and $a$ is a continuous function changing sign on
$\Omega\subset R^m$.
Classification :
47B10
@article{PIM_1996_N_S_59_73_a8,
author = {Milutin Dostani\'c},
title = {Asymptotic {Behavior} of {Eigenvalues} of {Certain} {Integral} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {95 },
publisher = {mathdoc},
volume = {_N_S_59},
number = {73},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/}
}
Milutin Dostanić. Asymptotic Behavior of Eigenvalues of Certain Integral Operators. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/