Asymptotic Behavior of Eigenvalues of Certain Integral Operators
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We find exact asymptotic behavior of positive and negative
eigenvalues of the operator $\int_\Omega k(x-y)a(y)\cdot dy$, where
$k$ is a real radial nonhomogenous function (satisfying some aditional
condition) and $a$ is a continuous function changing sign on
$\Omega\subset R^m$.
Classification :
47B10
@article{PIM_1996_N_S_59_73_a8,
author = {Milutin Dostani\'c},
title = {Asymptotic {Behavior} of {Eigenvalues} of {Certain} {Integral} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {95 },
year = {1996},
volume = {_N_S_59},
number = {73},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/}
}
Milutin Dostanić. Asymptotic Behavior of Eigenvalues of Certain Integral Operators. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/