Asymptotic Behavior of Eigenvalues of Certain Integral Operators
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We find exact asymptotic behavior of positive and negative eigenvalues of the operator $\int_\Omega k(x-y)a(y)\cdot dy$, where $k$ is a real radial nonhomogenous function (satisfying some aditional condition) and $a$ is a continuous function changing sign on $\Omega\subset R^m$.
Classification : 47B10
@article{PIM_1996_N_S_59_73_a8,
     author = {Milutin Dostani\'c},
     title = {Asymptotic {Behavior} of {Eigenvalues} of {Certain} {Integral} {Operators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {95 },
     publisher = {mathdoc},
     volume = {_N_S_59},
     number = {73},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/}
}
TY  - JOUR
AU  - Milutin Dostanić
TI  - Asymptotic Behavior of Eigenvalues of Certain Integral Operators
JO  - Publications de l'Institut Mathématique
PY  - 1996
SP  - 95 
VL  - _N_S_59
IS  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/
LA  - en
ID  - PIM_1996_N_S_59_73_a8
ER  - 
%0 Journal Article
%A Milutin Dostanić
%T Asymptotic Behavior of Eigenvalues of Certain Integral Operators
%J Publications de l'Institut Mathématique
%D 1996
%P 95 
%V _N_S_59
%N 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/
%G en
%F PIM_1996_N_S_59_73_a8
Milutin Dostanić. Asymptotic Behavior of Eigenvalues of Certain Integral Operators. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 95 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a8/