On Isomorphisms by Orthogonality of a Normed Space and an Inner Product Space
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 89
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Using a functional $g$, defined by (2), we introduce tree
kinds of orthogonality in normed spaces and, using them, we prove three
theorems on isomorphisms of a normed space and an inner product space.
Certain new characterizations of inner product spaces are obtained
using functional $g$.
@article{PIM_1996_N_S_59_73_a7,
author = {Pavle M. Mili\v{c}i\'c},
title = {On {Isomorphisms} by {Orthogonality} of a {Normed} {Space} and an {Inner} {Product} {Space}},
journal = {Publications de l'Institut Math\'ematique},
pages = {89 },
year = {1996},
volume = {_N_S_59},
number = {73},
zbl = {0889.46016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a7/}
}
Pavle M. Miličić. On Isomorphisms by Orthogonality of a Normed Space and an Inner Product Space. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 89 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a7/