A Constant Space Representation of Digital Cubic Parabolas
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 169
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The concept of ``noisy'' straight line introduced by Melter
and Rosenfeld is generalized and applied to digital cubic parabolas. It
is proved that digital cubic parabola segments and their least square
cubic parabola fits are in one-to-one correspondence. This leads to a
constant space representation of a digital cubic parabola segment. One
such representation is $(x_1,n,a,b,c,d)$, where $x_1$ and $n$ are the
left endpoint and the number of digital points, respectively, while
$a$, $b$, $c$ and $d$ are the coefficients of the least square cubic
parabola fit $Y = aX^3+bX^2+cX+d$ for the given cubic parabola segment.
Classification :
65D10 68G10
Keywords: coding scheme, shape representation, image vision, digital geometry.
Keywords: coding scheme, shape representation, image vision, digital geometry.
@article{PIM_1996_N_S_59_73_a14,
author = {Dragan M. Acketa and Jovi\v{s}a \v{Z}uni\'c},
title = {A {Constant} {Space} {Representation} of {Digital} {Cubic} {Parabolas}},
journal = {Publications de l'Institut Math\'ematique},
pages = {169 },
publisher = {mathdoc},
volume = {_N_S_59},
number = {73},
year = {1996},
zbl = {0994.65009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a14/}
}
TY - JOUR AU - Dragan M. Acketa AU - Joviša Žunić TI - A Constant Space Representation of Digital Cubic Parabolas JO - Publications de l'Institut Mathématique PY - 1996 SP - 169 VL - _N_S_59 IS - 73 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a14/ LA - en ID - PIM_1996_N_S_59_73_a14 ER -
Dragan M. Acketa; Joviša Žunić. A Constant Space Representation of Digital Cubic Parabolas. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 169 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a14/