On Independent Vertices and Edges of Belt Graphs
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 11
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $m(G,k)$ and $n(G,k)$ be the number of distinct
$k$-element sets of independent edges and vertices, respectively, of a
graph $G$. Let $h,p_1,p_2,\ldots,p_h$ be positive integers. For each
selection of $h,p_1,p_2,\ldots,p_h$ we construct two graphs
$N=N_h(p_1,p_2,\ldots,p_h)$ and $M=M_h(p_1,p_2,\ldots,p_h)$, such that
$m(N,k)=m(M,k)$ and $n(N,k)=n(M,k)$ for all but one value of $k$. The
graphs $N$ and $M$ correspond respectively to a normal and a
Möbius-type belt.
@article{PIM_1996_N_S_59_73_a1,
author = {Ivan Gutman},
title = {On {Independent} {Vertices} and {Edges} of {Belt} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {11 },
year = {1996},
volume = {_N_S_59},
number = {73},
zbl = {0942.05052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/}
}
Ivan Gutman. On Independent Vertices and Edges of Belt Graphs. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 11 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/