On Independent Vertices and Edges of Belt Graphs
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 11 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $m(G,k)$ and $n(G,k)$ be the number of distinct $k$-element sets of independent edges and vertices, respectively, of a graph $G$. Let $h,p_1,p_2,\ldots,p_h$ be positive integers. For each selection of $h,p_1,p_2,\ldots,p_h$ we construct two graphs $N=N_h(p_1,p_2,\ldots,p_h)$ and $M=M_h(p_1,p_2,\ldots,p_h)$, such that $m(N,k)=m(M,k)$ and $n(N,k)=n(M,k)$ for all but one value of $k$. The graphs $N$ and $M$ correspond respectively to a normal and a Möbius-type belt.
Classification : 05C70
@article{PIM_1996_N_S_59_73_a1,
     author = {Ivan Gutman},
     title = {On {Independent} {Vertices} and {Edges} of {Belt} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {11 },
     publisher = {mathdoc},
     volume = {_N_S_59},
     number = {73},
     year = {1996},
     zbl = {0942.05052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - On Independent Vertices and Edges of Belt Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1996
SP  - 11 
VL  - _N_S_59
IS  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/
LA  - en
ID  - PIM_1996_N_S_59_73_a1
ER  - 
%0 Journal Article
%A Ivan Gutman
%T On Independent Vertices and Edges of Belt Graphs
%J Publications de l'Institut Mathématique
%D 1996
%P 11 
%V _N_S_59
%N 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/
%G en
%F PIM_1996_N_S_59_73_a1
Ivan Gutman. On Independent Vertices and Edges of Belt Graphs. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 11 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a1/