Approximation-solvability of Hammerstein equations
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 71
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study Hammerstein operator equations of the form
$
x-KFx=f
\eqno (1.1)
$
where $K$ is linear and $F$ is a nonlinear map.
We first study Eq.~(1.1) in the operator form using the (pseudo)
$A$-proper mapping approach and the Brouwer degree theory. Then we
apply the obtained results to Hammerstein integral equations.
Classification :
47H15 35L70 35L75 35J40
Keywords: Approximation solvability, (pseudo) A-proper maps, surjectivity, elliptic, hyperbolic equations
Keywords: Approximation solvability, (pseudo) A-proper maps, surjectivity, elliptic, hyperbolic equations
@article{PIM_1995_N_S_58_72_a7,
author = {P. Milojevi\'c},
title = {Approximation-solvability of {Hammerstein} equations},
journal = {Publications de l'Institut Math\'ematique},
pages = {71 },
year = {1995},
volume = {_N_S_58},
number = {72},
zbl = {0999.47504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a7/}
}
P. Milojević. Approximation-solvability of Hammerstein equations. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a7/