Regular variation on homogeneous cones
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 51 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

The notion of regular variation is extended to functions defined on homogeneous cones in {\bf R}$^n$. For these functions we prove the Uniform Convergence Theorem and the Representation Theorem.
Classification : 26A12 43A85
Keywords: Regular variation, homogeneous cone
@article{PIM_1995_N_S_58_72_a6,
     author = {T. Ostrogorski},
     title = {Regular variation on homogeneous cones},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     year = {1995},
     volume = {_N_S_58},
     number = {72},
     zbl = {0999.26500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a6/}
}
TY  - JOUR
AU  - T. Ostrogorski
TI  - Regular variation on homogeneous cones
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 51 
VL  - _N_S_58
IS  - 72
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a6/
LA  - en
ID  - PIM_1995_N_S_58_72_a6
ER  - 
%0 Journal Article
%A T. Ostrogorski
%T Regular variation on homogeneous cones
%J Publications de l'Institut Mathématique
%D 1995
%P 51 
%V _N_S_58
%N 72
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a6/
%G en
%F PIM_1995_N_S_58_72_a6
T. Ostrogorski. Regular variation on homogeneous cones. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 51 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a6/