On the behaviour near the origin of sine series with convex coefficients
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 43 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let a numerical sequence $\{a_k\}$ tend to zero and be convex. We obtain estimates of $ g(x) := \sum_{k=1}^{\infty} a_k \sin kx $ for $x\,\to\,0$ expressed in terms of the coefficients $a_k$. These estimates are of order- or asymptotic character. For example, the following order equality is true: $ g(x) \sim ma_m + \frac{1}{m} \sum_{k = 1}^{m - 1} k a_k, $ where $ x \in łeft ({\frac {\pi}{m+1}, \frac {\pi}{m}} \right ]. $
Classification : 42A32
Keywords: sine series
@article{PIM_1995_N_S_58_72_a5,
     author = {S.A. Telyakovskii},
     title = {On the behaviour near the origin of sine series with convex coefficients},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {43 },
     publisher = {mathdoc},
     volume = {_N_S_58},
     number = {72},
     year = {1995},
     zbl = {0945.42004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a5/}
}
TY  - JOUR
AU  - S.A. Telyakovskii
TI  - On the behaviour near the origin of sine series with convex coefficients
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 43 
VL  - _N_S_58
IS  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a5/
LA  - en
ID  - PIM_1995_N_S_58_72_a5
ER  - 
%0 Journal Article
%A S.A. Telyakovskii
%T On the behaviour near the origin of sine series with convex coefficients
%J Publications de l'Institut Mathématique
%D 1995
%P 43 
%V _N_S_58
%N 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a5/
%G en
%F PIM_1995_N_S_58_72_a5
S.A. Telyakovskii. On the behaviour near the origin of sine series with convex coefficients. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 43 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a5/