A remark on the partial sums in Hardy spaces
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 149 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that a function $f$, analytic in the unit disc, belongs to the Hardy space $H^1$ if and only if $ \sum^n_{j=0} \frac1{+1} \|s_j f\| = O (łog n) \quad (n\to\infty), $ where $s_jf$ are the partial sums of the Taylor series of $f$. As a corollary we have that, for $f\in H^1$, $ \sum^n_{j=0} \frac1{j+1} \|f-s_jf\| = o(łog n), $ The analogous facts for $L^1$ do not hold.
Classification : 30D55
Keywords: Hardy space
@article{PIM_1995_N_S_58_72_a16,
     author = {M. Pavlovi\'c},
     title = {A remark on the partial sums in {Hardy} spaces},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {149 },
     publisher = {mathdoc},
     volume = {_N_S_58},
     number = {72},
     year = {1995},
     zbl = {0945.30029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a16/}
}
TY  - JOUR
AU  - M. Pavlović
TI  - A remark on the partial sums in Hardy spaces
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 149 
VL  - _N_S_58
IS  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a16/
LA  - en
ID  - PIM_1995_N_S_58_72_a16
ER  - 
%0 Journal Article
%A M. Pavlović
%T A remark on the partial sums in Hardy spaces
%J Publications de l'Institut Mathématique
%D 1995
%P 149 
%V _N_S_58
%N 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a16/
%G en
%F PIM_1995_N_S_58_72_a16
M. Pavlović. A remark on the partial sums in Hardy spaces. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 149 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a16/