Measuring asymptotic convexity
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 106
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study a class of functions which are almost convex in a
certain sense for large values of the argument. For this class of
functions an Abel--Tauber theorem is proved.
@article{PIM_1995_N_S_58_72_a11,
author = {A.A. Balkema and J.L. Geluk and L. de Haan},
title = {Measuring asymptotic convexity},
journal = {Publications de l'Institut Math\'ematique},
pages = {106 },
year = {1995},
volume = {_N_S_58},
number = {72},
zbl = {0901.26003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/}
}
A.A. Balkema; J.L. Geluk; L. de Haan. Measuring asymptotic convexity. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 106 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/