Measuring asymptotic convexity
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 106 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study a class of functions which are almost convex in a certain sense for large values of the argument. For this class of functions an Abel--Tauber theorem is proved.
Classification : 26A12 40E05
Keywords: asymptotic convexity
@article{PIM_1995_N_S_58_72_a11,
     author = {A.A. Balkema and J.L. Geluk and L. de Haan},
     title = {Measuring asymptotic convexity},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {106 },
     publisher = {mathdoc},
     volume = {_N_S_58},
     number = {72},
     year = {1995},
     zbl = {0901.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/}
}
TY  - JOUR
AU  - A.A. Balkema
AU  - J.L. Geluk
AU  - L. de Haan
TI  - Measuring asymptotic convexity
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 106 
VL  - _N_S_58
IS  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/
LA  - en
ID  - PIM_1995_N_S_58_72_a11
ER  - 
%0 Journal Article
%A A.A. Balkema
%A J.L. Geluk
%A L. de Haan
%T Measuring asymptotic convexity
%J Publications de l'Institut Mathématique
%D 1995
%P 106 
%V _N_S_58
%N 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/
%G en
%F PIM_1995_N_S_58_72_a11
A.A. Balkema; J.L. Geluk; L. de Haan. Measuring asymptotic convexity. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 106 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a11/