Expansions of the Kurepa Functions
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 81 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Taylor series expansions of the Kurepa function $K(a+z)$, $a\ge 0$, and numerical determination of their coefficients $b_\nu(a)$ for $a=0$ and $a=1$ are given. An asymptotic behaviour of $b_\nu(a)$ as well as that $|b_\nu(a)/b_{\nu+1}(a)|\sim a+1$, when $\nu\to\infty$, are shown. Using this fact, a transformation of series with much faster convergence is done. Numerical values of coefficients in such a transformed series for $a=0$ and $a=1$ are given with $30$ decimal digits. Also, the Chebyshev expansions of $K(1+z)$ and $1/K(1+z)$ are obtained.
Classification : 33B15 64D20
@article{PIM_1995_N_S_57_71_a8,
     author = {Gradimir V. Milovanovi\'c},
     title = {Expansions of the {Kurepa} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {81 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a8/}
}
TY  - JOUR
AU  - Gradimir V. Milovanović
TI  - Expansions of the Kurepa Functions
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 81 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a8/
LA  - en
ID  - PIM_1995_N_S_57_71_a8
ER  - 
%0 Journal Article
%A Gradimir V. Milovanović
%T Expansions of the Kurepa Functions
%J Publications de l'Institut Mathématique
%D 1995
%P 81 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a8/
%G en
%F PIM_1995_N_S_57_71_a8
Gradimir V. Milovanović. Expansions of the Kurepa Functions. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 81 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a8/