Edge Decompositions of Graphs With no Large Independent Sets
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If the continuum hypothesis holds then every graph on $\omega_1$ with no uncountable independent sets can be edge decomposed into the disjoint union of $\aleph_1$ subgraphs with the same property. In the absence of the continuum hypothesis this may or may not be true. Extensions to other cardinals are given.
Classification : 03E05 03E35 03E50 04A20
@article{PIM_1995_N_S_57_71_a7,
     author = {F. Galvin and P. Komjath and A. Hajnal},
     title = {Edge {Decompositions} of {Graphs} {With} no {Large} {Independent} {Sets}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {71 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/}
}
TY  - JOUR
AU  - F. Galvin
AU  - P. Komjath
AU  - A. Hajnal
TI  - Edge Decompositions of Graphs With no Large Independent Sets
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 71 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/
LA  - en
ID  - PIM_1995_N_S_57_71_a7
ER  - 
%0 Journal Article
%A F. Galvin
%A P. Komjath
%A A. Hajnal
%T Edge Decompositions of Graphs With no Large Independent Sets
%J Publications de l'Institut Mathématique
%D 1995
%P 71 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/
%G en
%F PIM_1995_N_S_57_71_a7
F. Galvin; P. Komjath; A. Hajnal. Edge Decompositions of Graphs With no Large Independent Sets. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/