Edge Decompositions of Graphs With no Large Independent Sets
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If the continuum hypothesis holds then every graph on
$\omega_1$ with no uncountable independent sets can be edge decomposed
into the disjoint union of $\aleph_1$ subgraphs with the same property.
In the absence of the continuum hypothesis this may or may not be true.
Extensions to other cardinals are given.
Classification :
03E05 03E35 03E50 04A20
@article{PIM_1995_N_S_57_71_a7,
author = {F. Galvin and P. Komjath and A. Hajnal},
title = {Edge {Decompositions} of {Graphs} {With} no {Large} {Independent} {Sets}},
journal = {Publications de l'Institut Math\'ematique},
pages = {71 },
year = {1995},
volume = {_N_S_57},
number = {71},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/}
}
TY - JOUR AU - F. Galvin AU - P. Komjath AU - A. Hajnal TI - Edge Decompositions of Graphs With no Large Independent Sets JO - Publications de l'Institut Mathématique PY - 1995 SP - 71 VL - _N_S_57 IS - 71 UR - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/ LA - en ID - PIM_1995_N_S_57_71_a7 ER -
F. Galvin; P. Komjath; A. Hajnal. Edge Decompositions of Graphs With no Large Independent Sets. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/