Edge Decompositions of Graphs With no Large Independent Sets
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If the continuum hypothesis holds then every graph on
$\omega_1$ with no uncountable independent sets can be edge decomposed
into the disjoint union of $\aleph_1$ subgraphs with the same property.
In the absence of the continuum hypothesis this may or may not be true.
Extensions to other cardinals are given.
Classification :
03E05 03E35 03E50 04A20
@article{PIM_1995_N_S_57_71_a7,
author = {F. Galvin and P. Komjath and A. Hajnal},
title = {Edge {Decompositions} of {Graphs} {With} no {Large} {Independent} {Sets}},
journal = {Publications de l'Institut Math\'ematique},
pages = {71 },
publisher = {mathdoc},
volume = {_N_S_57},
number = {71},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/}
}
TY - JOUR AU - F. Galvin AU - P. Komjath AU - A. Hajnal TI - Edge Decompositions of Graphs With no Large Independent Sets JO - Publications de l'Institut Mathématique PY - 1995 SP - 71 VL - _N_S_57 IS - 71 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/ LA - en ID - PIM_1995_N_S_57_71_a7 ER -
F. Galvin; P. Komjath; A. Hajnal. Edge Decompositions of Graphs With no Large Independent Sets. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a7/