There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 189
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that a countable, complete, strictly stable theory
with no dense forking chains has infinitely many pairwise nonisomorphic
countable models.
Classification :
03C45
@article{PIM_1995_N_S_57_71_a19,
author = {Predrag Tanovi\'c},
title = {There are {Infinitely} {Many} {Countable} {Models} of {Strictly} {Stable} {Theories} {With} no {Dense} {Forking} {Chains}},
journal = {Publications de l'Institut Math\'ematique},
pages = {189 },
year = {1995},
volume = {_N_S_57},
number = {71},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/}
}
TY - JOUR AU - Predrag Tanović TI - There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains JO - Publications de l'Institut Mathématique PY - 1995 SP - 189 VL - _N_S_57 IS - 71 UR - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/ LA - en ID - PIM_1995_N_S_57_71_a19 ER -
%0 Journal Article %A Predrag Tanović %T There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains %J Publications de l'Institut Mathématique %D 1995 %P 189 %V _N_S_57 %N 71 %U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/ %G en %F PIM_1995_N_S_57_71_a19
Predrag Tanović. There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 189 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/