There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 189 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that a countable, complete, strictly stable theory with no dense forking chains has infinitely many pairwise nonisomorphic countable models.
Classification : 03C45
@article{PIM_1995_N_S_57_71_a19,
     author = {Predrag Tanovi\'c},
     title = {There are {Infinitely} {Many} {Countable} {Models} of {Strictly} {Stable} {Theories} {With} no {Dense} {Forking} {Chains}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {189 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/}
}
TY  - JOUR
AU  - Predrag Tanović
TI  - There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 189 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/
LA  - en
ID  - PIM_1995_N_S_57_71_a19
ER  - 
%0 Journal Article
%A Predrag Tanović
%T There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains
%J Publications de l'Institut Mathématique
%D 1995
%P 189 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/
%G en
%F PIM_1995_N_S_57_71_a19
Predrag Tanović. There are Infinitely Many Countable Models of Strictly Stable Theories With no Dense Forking Chains. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 189 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a19/