A Note on Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 23 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a ring of prime characteristic and let $D$ be a finite set of derivations of $R$. We obtain results connecting the $D$-simplicity of $R$ with the simplicity of the skew polynomial ring over $R$ defined with respect to $D$. A similar result was quoted, without proof, by the author in an earlier paper.
Classification : 16A05
@article{PIM_1994_N_S_55_69_a3,
     author = {Michael G. Voskoglou},
     title = {A {Note} on {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {23 },
     publisher = {mathdoc},
     volume = {_N_S_55},
     number = {69},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a3/}
}
TY  - JOUR
AU  - Michael G. Voskoglou
TI  - A Note on Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 23 
VL  - _N_S_55
IS  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a3/
LA  - en
ID  - PIM_1994_N_S_55_69_a3
ER  - 
%0 Journal Article
%A Michael G. Voskoglou
%T A Note on Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 1994
%P 23 
%V _N_S_55
%N 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a3/
%G en
%F PIM_1994_N_S_55_69_a3
Michael G. Voskoglou. A Note on Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 23 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a3/