On Subharmonic Behaviour and Oscillation of Functions on Balls in Rn
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 18
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give sufficient conditions for a nonnegative function to
behave like a subharmonic function. If $f$ is a $C^1$-function on a
domain $D\subset R^n$ such that $|\nabla f(a)|\leq Kr^{-1}$
$\omega_f(a,r)$ ($K=$const) where $\omega_f(a,r)$ is the oscillation
of $f$ on the ball $B_r(a)\subset D$, then both $|f|^p$ and
$|\nabla f|^p$ ($p>0$) have a weakened sub-mean-value property.
Classification :
31B05
Keywords: harmonic functions, sub-mean-value property, oscillation
Keywords: harmonic functions, sub-mean-value property, oscillation
@article{PIM_1994_N_S_55_69_a2,
author = {Miroslav Pavlovi\'c},
title = {On {Subharmonic} {Behaviour} and {Oscillation} of {Functions} on {Balls} in {Rn}},
journal = {Publications de l'Institut Math\'ematique},
pages = {18 },
year = {1994},
volume = {_N_S_55},
number = {69},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a2/}
}
Miroslav Pavlović. On Subharmonic Behaviour and Oscillation of Functions on Balls in Rn. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a2/