On Certain Divisor Functions in Short Intervals
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An asymptotic formula for the integral of the summatory
function of $f(n)$ in short intervals is obtained, where $f(n)$
represents a certain divisor function. In particular $f(n)$ can be the
characteristic function of the set of $k$-free or $k$-full numbers.
Classification :
11N37 26A12
Keywords: Divisor functions, squarefull and squarefree numbers, slowly varying functions
Keywords: Divisor functions, squarefull and squarefree numbers, slowly varying functions
@article{PIM_1994_N_S_55_69_a1,
author = {Aleksandar Ivi\'c},
title = {On {Certain} {Divisor} {Functions} in {Short} {Intervals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {9 },
publisher = {mathdoc},
volume = {_N_S_55},
number = {69},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/}
}
Aleksandar Ivić. On Certain Divisor Functions in Short Intervals. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/