On Certain Divisor Functions in Short Intervals
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An asymptotic formula for the integral of the summatory
function of $f(n)$ in short intervals is obtained, where $f(n)$
represents a certain divisor function. In particular $f(n)$ can be the
characteristic function of the set of $k$-free or $k$-full numbers.
Classification :
11N37 26A12
Keywords: Divisor functions, squarefull and squarefree numbers, slowly varying functions
Keywords: Divisor functions, squarefull and squarefree numbers, slowly varying functions
@article{PIM_1994_N_S_55_69_a1,
author = {Aleksandar Ivi\'c},
title = {On {Certain} {Divisor} {Functions} in {Short} {Intervals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {9 },
year = {1994},
volume = {_N_S_55},
number = {69},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/}
}
Aleksandar Ivić. On Certain Divisor Functions in Short Intervals. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/