On Certain Divisor Functions in Short Intervals
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An asymptotic formula for the integral of the summatory function of $f(n)$ in short intervals is obtained, where $f(n)$ represents a certain divisor function. In particular $f(n)$ can be the characteristic function of the set of $k$-free or $k$-full numbers.
Classification : 11N37 26A12
Keywords: Divisor functions, squarefull and squarefree numbers, slowly varying functions
@article{PIM_1994_N_S_55_69_a1,
     author = {Aleksandar Ivi\'c},
     title = {On {Certain} {Divisor} {Functions} in {Short} {Intervals}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {9 },
     publisher = {mathdoc},
     volume = {_N_S_55},
     number = {69},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - On Certain Divisor Functions in Short Intervals
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 9 
VL  - _N_S_55
IS  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/
LA  - en
ID  - PIM_1994_N_S_55_69_a1
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T On Certain Divisor Functions in Short Intervals
%J Publications de l'Institut Mathématique
%D 1994
%P 9 
%V _N_S_55
%N 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/
%G en
%F PIM_1994_N_S_55_69_a1
Aleksandar Ivić. On Certain Divisor Functions in Short Intervals. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a1/