Sur l'Indice de Schur Dans les Groupes Dont les Caracteres Sont a Valeurs Rationnelles
Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 29
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that if $G$ is a solvable group with rational
characters and {\bf R} is a splitting field for $G$, then
{\bf Q}$(2^{1/2})$ is also a splitting field for $G$ and we obtain
some sufficient conditions which guarantee that an irréductible
character $\Gamma$ of a group with rational characters has Schur
indices $m_Q(\Gamma)=1$. These results are related to the Gow
conjecture [2] wich asserts that for a solvable group whose
characters are rational valued and {\bf R} is a splitting field for
$G$, then {\bf Q} is also a splitting field for $G$.
Classification :
20C15
@article{PIM_1993_N_S_54_68_a4,
author = {Ion Armeanu},
title = {Sur {l'Indice} de {Schur} {Dans} les {Groupes} {Dont} les {Caracteres} {Sont} a {Valeurs} {Rationnelles}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
year = {1993},
volume = {_N_S_54},
number = {68},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a4/}
}
TY - JOUR AU - Ion Armeanu TI - Sur l'Indice de Schur Dans les Groupes Dont les Caracteres Sont a Valeurs Rationnelles JO - Publications de l'Institut Mathématique PY - 1993 SP - 29 VL - _N_S_54 IS - 68 UR - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a4/ LA - en ID - PIM_1993_N_S_54_68_a4 ER -
Ion Armeanu. Sur l'Indice de Schur Dans les Groupes Dont les Caracteres Sont a Valeurs Rationnelles. Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a4/