The Strongly Asymmetric Graphs of Order 6 and 7
Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 25
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be an arbitrary connected simple graph of order $n$.
$G$ is called strongly asymmetric graph if all induced overgraphs of
$G$ of order $n+1$ are nonisomorphic. We give the list of all strongly
asymmetric graphs of order $6$ and $7$. Also we prove that there exist
exactly $16$ asymmetric graphs of order $7$ which are not strongly
asymmetric.
Classification :
05C50
@article{PIM_1993_N_S_54_68_a3,
author = {Mirko Lepovi\'c},
title = {The {Strongly} {Asymmetric} {Graphs} of {Order} 6 and 7},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
year = {1993},
volume = {_N_S_54},
number = {68},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/}
}
Mirko Lepović. The Strongly Asymmetric Graphs of Order 6 and 7. Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/