The Strongly Asymmetric Graphs of Order 6 and 7
Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 25 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be an arbitrary connected simple graph of order $n$. $G$ is called strongly asymmetric graph if all induced overgraphs of $G$ of order $n+1$ are nonisomorphic. We give the list of all strongly asymmetric graphs of order $6$ and $7$. Also we prove that there exist exactly $16$ asymmetric graphs of order $7$ which are not strongly asymmetric.
Classification : 05C50
@article{PIM_1993_N_S_54_68_a3,
     author = {Mirko Lepovi\'c},
     title = {The {Strongly} {Asymmetric} {Graphs} of {Order} 6 and 7},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {25 },
     publisher = {mathdoc},
     volume = {_N_S_54},
     number = {68},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/}
}
TY  - JOUR
AU  - Mirko Lepović
TI  - The Strongly Asymmetric Graphs of Order 6 and 7
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 25 
VL  - _N_S_54
IS  - 68
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/
LA  - en
ID  - PIM_1993_N_S_54_68_a3
ER  - 
%0 Journal Article
%A Mirko Lepović
%T The Strongly Asymmetric Graphs of Order 6 and 7
%J Publications de l'Institut Mathématique
%D 1993
%P 25 
%V _N_S_54
%N 68
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/
%G en
%F PIM_1993_N_S_54_68_a3
Mirko Lepović. The Strongly Asymmetric Graphs of Order 6 and 7. Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a3/