Enlargement of the Class of Geometrically Infinitely Divisible Random Variables
Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 126
The class of negative binomial infinitely divisible random
variables is introduced in the following way: Random variable $Y$ is
called {\it negative binomial infinitely divisible\/} if there exist
i.i.d. random variables $X^{(1)}_p,X^{(2)}_p,\dots$, $p\in(0,1)$,
independent of $Y$ and $\nu^{(r)}_p$ and such that
$
Y \mathrel{\mathop=^{\text {\rm d}}} łim_{p\to 0} \sum^{\nu_p^{(r)}}_{j=1}
X^{(j)}_p,
$
where $\nu^{(r)}_p$ has negative binomial law.
\par
The representation of characteristic functions from the class of
negative binomial infinitely divisible random variables is given and
also some related properties discussed. When $r=1$ the above class
reduces to the well known class of geometrically infinitely divisible
random variables.
Classification :
60E07
@article{PIM_1993_N_S_54_68_a15,
author = {Slobodanka Jankovi\'c},
title = {Enlargement of the {Class} of {Geometrically} {Infinitely} {Divisible} {Random} {Variables}},
journal = {Publications de l'Institut Math\'ematique},
pages = {126 },
year = {1993},
volume = {_N_S_54},
number = {68},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a15/}
}
TY - JOUR AU - Slobodanka Janković TI - Enlargement of the Class of Geometrically Infinitely Divisible Random Variables JO - Publications de l'Institut Mathématique PY - 1993 SP - 126 VL - _N_S_54 IS - 68 UR - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a15/ LA - en ID - PIM_1993_N_S_54_68_a15 ER -
Slobodanka Janković. Enlargement of the Class of Geometrically Infinitely Divisible Random Variables. Publications de l'Institut Mathématique, _N_S_54 (1993) no. 68, p. 126 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_54_68_a15/