Idempotent Separating Congruences on an Orthodox Semigroup
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 45
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The least inverse congruence $Y$ on an orthodox semigroup
$S$ was considered by Yamada [14] for the case where the band of
idempotents of $S$ is normal. It was considered in the general orthodox
case by Schein [12] and Hall [4]. An explicit construction for
idempotent separating congruences on an orthodox semigroup $S$ in terms
of idempotent separating congruences on $S/Y$ was given by McAlister
[8]. In this paper we describe these congruences by inverse congruences
contained in $\mu\circ Y$, where $\mu$ is the greatest idempotent
separating congruence on $S$. Also, we obtain some mutually inverse
complete lattice isomorphisms of intervals $[Y,\mu \circ Y]$ and
$[\varepsilon,\mu]$, where $\varepsilon$ is the identity relation on
$S$.
Classification :
20M19
@article{PIM_1993_N_S_53_67_a5,
author = {Dragica N. Krgovi\'c},
title = {Idempotent {Separating} {Congruences} on an {Orthodox} {Semigroup}},
journal = {Publications de l'Institut Math\'ematique},
pages = {45 },
publisher = {mathdoc},
volume = {_N_S_53},
number = {67},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a5/}
}
Dragica N. Krgović. Idempotent Separating Congruences on an Orthodox Semigroup. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 45 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a5/