Completely Regular and Orthodox Congruences on Regular Semigroups
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 37 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $S$ be a regular semigroup and $E(S)$ the set of all idempotents of $S$. Let $\operatorname{Con}} S$ be the congruence lattice of $S$, and let $T$, $K$, $U$ and $V$ be equivalences on $\operatorname{Con}} S$ defined by $\rho T\xi \Leftrightarrow \tr\rho = \tr\xi$, $\rho K\xi \Leftrightarrow \ker \rho = \ker \xi$, $\rho U\xi \Leftrightarrow \rho \cap \leq = \xi\, \cap \leq$ and $V = U\cap K$, where $\tr\rho = \rho \mid_{E(S)}$, $\ker \rho = E(S)\rho$, and $\leq$ is the natural partial order on $E(S)$. It is known that $T$, $U$ and $V$ are complete congruences on $\operatorname{Con}} S$ and $T$-, $K$-, $U$- and $V$-classes are intervals $[\rho_T,\rho^T]$, $[\rho_K,\rho^K]$, $[\rho_U,\rho^U]$, and $[\rho_V,\rho^V]$, respectively ([13], [10], [9]). In this paper $U$-classes for which $\rho^U$ is a semilattice congruence, and $V$-classes for which $\rho^V$ is an inverse congruence are considered. It turns out that the union of all such $U$-classes is the lattice CR$\operatorname{Con}} S$ of all completely regular congruences on $S$, and the union of all such $V$-classes is the lattice O$\operatorname{Con}} S$ of all orthodox congruences on $S$. Also, some complete epimorphisms of the form $\rho \to \rho^U$ and $\rho \to \rho^V$ are obtained.
Classification : 20M17
@article{PIM_1993_N_S_53_67_a4,
     author = {Branka Alimpi\'c and Dragica N. Krgovi\'c},
     title = {Completely {Regular} and {Orthodox} {Congruences} on {Regular} {Semigroups}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_53},
     number = {67},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/}
}
TY  - JOUR
AU  - Branka Alimpić
AU  - Dragica N. Krgović
TI  - Completely Regular and Orthodox Congruences on Regular Semigroups
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 37 
VL  - _N_S_53
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/
LA  - en
ID  - PIM_1993_N_S_53_67_a4
ER  - 
%0 Journal Article
%A Branka Alimpić
%A Dragica N. Krgović
%T Completely Regular and Orthodox Congruences on Regular Semigroups
%J Publications de l'Institut Mathématique
%D 1993
%P 37 
%V _N_S_53
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/
%G en
%F PIM_1993_N_S_53_67_a4
Branka Alimpić; Dragica N. Krgović. Completely Regular and Orthodox Congruences on Regular Semigroups. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 37 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/