Completely Regular and Orthodox Congruences on Regular Semigroups
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 37
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $S$ be a regular semigroup and $E(S)$ the set of all
idempotents of $S$. Let $\operatorname{Con}} S$ be the congruence
lattice of $S$, and let $T$, $K$, $U$ and $V$ be equivalences on
$\operatorname{Con}} S$ defined by $\rho T\xi \Leftrightarrow \tr\rho =
\tr\xi$, $\rho K\xi \Leftrightarrow \ker \rho = \ker \xi$, $\rho U\xi
\Leftrightarrow \rho \cap \leq = \xi\, \cap \leq$ and $V = U\cap K$,
where $\tr\rho = \rho \mid_{E(S)}$, $\ker \rho = E(S)\rho$, and
$\leq$ is the natural partial order on $E(S)$. It is known that $T$,
$U$ and $V$ are complete congruences on $\operatorname{Con}} S$ and
$T$-, $K$-, $U$- and $V$-classes are intervals $[\rho_T,\rho^T]$,
$[\rho_K,\rho^K]$, $[\rho_U,\rho^U]$, and $[\rho_V,\rho^V]$,
respectively ([13], [10], [9]). In this paper $U$-classes for which
$\rho^U$ is a semilattice congruence, and $V$-classes for which
$\rho^V$ is an inverse congruence are considered. It turns out that the
union of all such $U$-classes is the lattice CR$\operatorname{Con}} S$
of all completely regular congruences on $S$, and the union of all such
$V$-classes is the lattice O$\operatorname{Con}} S$ of all orthodox
congruences on $S$. Also, some complete epimorphisms of the form $\rho
\to \rho^U$ and $\rho \to \rho^V$ are obtained.
Classification :
20M17
@article{PIM_1993_N_S_53_67_a4,
author = {Branka Alimpi\'c and Dragica N. Krgovi\'c},
title = {Completely {Regular} and {Orthodox} {Congruences} on {Regular} {Semigroups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
publisher = {mathdoc},
volume = {_N_S_53},
number = {67},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/}
}
TY - JOUR AU - Branka Alimpić AU - Dragica N. Krgović TI - Completely Regular and Orthodox Congruences on Regular Semigroups JO - Publications de l'Institut Mathématique PY - 1993 SP - 37 VL - _N_S_53 IS - 67 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/ LA - en ID - PIM_1993_N_S_53_67_a4 ER -
%0 Journal Article %A Branka Alimpić %A Dragica N. Krgović %T Completely Regular and Orthodox Congruences on Regular Semigroups %J Publications de l'Institut Mathématique %D 1993 %P 37 %V _N_S_53 %N 67 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/ %G en %F PIM_1993_N_S_53_67_a4
Branka Alimpić; Dragica N. Krgović. Completely Regular and Orthodox Congruences on Regular Semigroups. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 37 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a4/